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ABSTRACT

Non-intrusive speech assessment methods have garnered sig-
nificant attention in making objective evaluations, largely be-
cause they do not need a clean reference. Recently, deep
neural network (DNN) models have been applied to build
non-intrusive speech assessment approaches and have been
shown to provide promising performance. However, most
DNN-based approaches are designed for normal-hearing lis-
teners without considering hearing-loss factors. In this study,
we propose a DNN-based hearing aid speech assessment net-
work (HASA-Net), formed by a bidirectional long short-term
memory (BLSTM) model, to predict speech quality and intel-
ligibility scores simultaneously based on input speech signals
and specified hearing-loss patterns. To the best of our knowl-
edge, HASA-Net is the first work to incorporate quality and
intelligibility assessments utilizing a unified DNN-based non-
intrusive model for hearing aids. Experimental results show
that the speech quality and intelligibility scores predicted by
HASA-Net are highly correlated to two well-known intru-
sive hearing-aid evaluation metrics, hearing aid speech qual-
ity index (HASQI) and hearing aid speech perception index
(HASPI), respectively.

Index Terms— objective metrics, hearing loss, end-to-
end, non-intrusive, multi-task learning

1. INTRODUCTION

Speech quality and intelligibility assessments serve as impor-
tant tools to many speech-related applications. Speech qual-
ity indicates pleasantness or naturalness of a speech signal,
and speech intelligibility measures how well the content of
the speech can be understood. A straightforward approach to
measure speech quality or intelligibility is to conduct subjec-
tive listening tests. In such tests, speech signals are played
to a group of listeners, who are then asked to score the qual-
ity or provide recognized words of the heard speech signals.
To avoid potential assessment biases, a large number of sub-
jects is generally required. However, conducting listening
tests on many subjects is time-consuming and prohibitively

expensive. Therefore, objective speech quality and intelligi-
bility assessments are developed based on such studies and
used as surrogates to the subjective listening tests.

Objective speech assessments can be roughly divided into
two categories: intrusive and non-intrusive. Intrusive meth-
ods [1–6] use the clean speech as reference to compare with
the degraded/processed one to give the output index. How-
ever, clean speech may not always be available and thus re-
strict practicality of intrusive methods [7]. On the other hand,
non-intrusive methods [8–11] are capable of calculating the
output index directly on the degraded/processed speech with-
out reference data. Without the requirement of reference data,
non-intrusive methods have been widely adopted in online as-
sessment and real-world applications.

Recently, deep neural network (DNN) models have been
used as a fundamental tool for speech quality and intelligibil-
ity assessment [12–18]. For speech quality, Quality-Net [13]
was proposed as an end-to-end, non-intrusive speech qual-
ity evaluation model; Quality-Net is a BLSTM-based model
and capable of predicting perceptual evaluation of speech
quality (PESQ) scores for noisy/processed speech signals.
MOSNet [14] was designed to predict mean opinion score
(MOS) for converted speech. Later on, MBNet [18], which
consists of a MeanNet and a BiasNet, was proposed as an
improved version of MOSNet, considering score variations
caused by personal preferences. For speech intelligibility,
STOI-Net [17] utilizes CNN-BLSTM with a multiplicative
attention mechanism to predict speech intelligibility. A uni-
fied model that estimates multiple objective speech quality
and intelligibility scores is developed and presented in [16].

Despite the recent attention on utilizing DNN for objec-
tive speech evaluation, limited research considers hearing-
impaired listeners; that is, users with assistive listening de-
vices, such as hearing aids and cochlear implants. Hearing
loss is ranked as the fourth highest cause of disability glob-
ally [19] and refers to the total or partial inability to hear. The
impacts of hearing loss have profound effects on ability to
communicate. Approximately 80 percent of people were liv-
ing with varying degrees of hearing loss in 2018 [20]. The
prevalence of hearing loss in the United States doubles with



every ten year increase in age [19]. In order to broaden the
impact of speech research to include the elderly and hearing-
impaired, research with hearing impaired listeners are of in-
creased importance. So far, numerous advanced signal pro-
cessing methods have been tested on scenarios of hearing im-
paired listeners [21–24]. An effective speech quality and in-
telligibility assessment system for varying hearing loss pat-
terns thus becomes an essential tool to further develop suit-
able speech signal processing methods for assistive listening
devices.

In this study, we propose a novel deep-learning based
end to-end, non-intrusive hearing aid speech assessment
model, which we call HASA-Net. HASA-Net is a unified
model capable of simultaneously estimating quality and in-
telligibility given input speech and specified hearing-loss
patterns. Specifically, HASA-Net aims to predict HASQI [4]
and HASPI [5] scores, which are two well-known evalua-
tion metrics for speech quality and intelligibility designed for
hearing aids. HASQI and HASPI are based on an auditory
model that incorporates changes due to hearing loss. While
both HASQI and HASPI are based on a calculation com-
paring the noisy signal with its clean reference, HASA-Net
predicts scores without the need of clean reference. To the
best of our knowledge, HASA-Net represents the first step to-
wards an end-to-end, non-intrusive unified model for hearing
aids that simultaneously measures quality and intelligibility.

The remainder of this paper is organized as follows. We
describe the details of HASA-Net in Section 2. The experi-
mental setup and results are presented in Section 3. Finally,
we conclude this work in Section 4.

2. HASA-NET

HASA-Net is an objective speech assessment model adopt-
ing multi-task learning and multi-head attention mechanism.
We first introduce multi-task learning, multi-head attention
mechanism, the overall framework of HASA-Net, and the
loss function.

2.1. Multi-task learning

Multi-task learning (MTL) [25] has been widely adopted in
speech-related applications [26–29]. The aim of MTL is to si-
multaneously learn multiple related tasks with a unified model
to obtain more robust shared feature representations, thereby
improving the overall performance for all tasks. In this paper,
we exploit a MTL structure to HASA-Net to jointly predict
speech quality and intelligibility scores.

2.2. Multi-head attention mechanism

When considering the significance of each speech frame
within the input utterances to the target task, the attention
mechanism has shown promising effectiveness in making

models focus on important information of feature maps. For
example, silence frames are less informative and should be
given less attention (thus giving lighter weights), whereas
frames containing speech are more informative and should
be given higher attention (thus giving higher weights) for
speech emotion recognition [30]. In this study, we use the
self-attention mechanism to learn different weighted combi-
nations of all time frames in an input sequence. Specifically,
an output of the self-attention layer is the weighted sum of the
input sequence by calculating every attention weight based
on the dependencies between the current frame and other
frames within the input sequence. In contrast to single-head
attention, multi-head attention [31] is adopted to capture in-
formation from multiple representation subspaces in order
to enhance model’s expressiveness. In short, the core idea
of incorporating multi-head self-attention in HASA-Net is
to emphasize different frame-wise features when predicting
speech quality and intelligibility scores.

2.3. Network architecture

Fig.1 illustrates the overall architecture of HASA-Net. The
input of HASA-Net is composed of concatenated Time-
frequency (T-F) features and hearing-loss patterns. T-F fea-
tures are extracted using a 512-point short time Fourier trans-
form (STFT) with a Hamming window size of 512 points
and a hop size of 256 points, resulting in a 257-dimension
magnitude spectrum. HASA-Net consists of a stack of one
bidirectional LSTM with 100 nodes, followed by one dense
layer with 128 rectified linear units (ReLU) nodes. By sharing
the bidirectional LSTM and dense layers between all tasks,
the remaining layers are split into two separate tasks. One
task is for quality estimation and the other is for intelligibility
prediction. In each task, a multi-head attention mechanism is
first applied to aggregate task-specific information based on
the shared features. After the multi-head attention, a dense
layer with one node activated with a sigmoid function is ap-
plied. The output of the dense layer is the predicted score for
each frame. Finally, we obtain the final utterance-level score
by calculating the global average pooling operation based on
frame scores.

2.4. Objective function

The loss function for each utterance is the summation of
utterance-level loss and averaged frame-wise loss. We for-
mulate the loss for quality estimation as follows:

LQuality =
1

N

N∑
n=1

[(Q̂n −Qn)
2 +

1

Tn

Tn∑
t=1

(Q̂n − qn,t)2]

where Q̂n and Qn represent the true and estimated quality
scores for the n-th utterance, respectively, whileN represents
the total training utterances and Tn is the number of frames
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Fig. 1. Architecture of the HASA-Net model.

in utterance n. Meanwhile, qn,t denotes the estimated frame
quality score of the t-th frame of utterance n. The loss func-
tion for the intelligibility estimator is identical to that of qual-
ity. Similarly, the loss function for intelligibility estimation is
then given as:

LIntelligibility =
1

N

N∑
n=1

[(În − In)2 +
1

Tn

Tn∑
t=1

(În − in,t)2]

where În and In denote the true and estimated intelligibility
scores for the n-th utterance, and in,t stands for the estimated
frame intelligibility score of the t-th frame of utterance n.

The overall loss is the sum of the losses for the two tasks:

LTotal = α× LQuality + β × LIntelligibility

where α and β represent the weights for the two tasks. Ac-
cording to our internal evaluations, we empirically set α to
1.0 and β to 1.5.

3. EXPERIMENTS

3.1. Dataset

We conducted experiments using the TIMIT database [32].
All 4620 utterances from the training set of TIMIT were uti-
lized for training. The noisy set was generated by corrupting
the utterances with 80 noises combined at seven SNR values:
-15, -10, -5, 0, 5, 10 and 15 dB. These noise signals were
obtained from the 100 noises dataset [33]. In addition, each
utterance was corrupted with one noise type at one SNR level
so that all the training data was unparalleled.

For test data, we randomly selected 100 clean speech sig-
nals from the test set of the TIMIT database. These selected
utterances were then mixed with four unseen noise types (en-
gine, white, street and baby cry) at four SNRs levels:-6,0,6
and 12 dB. In total, the testing data comprises 1200 utter-
ances.

3.2. Hearing-loss patterns

Hearing loss is detected through an audiogram, which is a
graphical display showing the degrees of hearing loss at dif-
ferent frequency regions [34]. A threshold at any frequency
above 20 dB is considered as a hearing loss. The hearing loss
patterns are selected at frequencies of 250, 500, 1000, 2000,
4000, and 6000 Hz. Each audiogram is assigned to one of the
six categories flat, sloping, rising, cookie-bite, noise-notched
and high-frequency [35]. Different configurations of hearing
loss are shown in Fig. 2.

In the flat category (Fig. 2(a)), there are no change in
thresholds across frequencies. Audiograms with sloping con-
figurations have increased thresholds from low to high fre-
quencies (Fig. 2(b)). The rising category with thresholds de-
crease as frequencies increased (Fig. 2(c)). A cookie-bite
audiogram has greatest thresholds in the mid frequencies be-
tween 500 and 4000 Hz (Fig. 2(d)). A noise-notch config-
uration reaches a maximum threshold in frequency between
3000 and 6000 Hz (Fig. 2(e)). High-frequency category has
hearing loss occurs at frequencies between 2000 and 8000 Hz,
while frequencies below 2000 Hz are not affected (Fig. 2(f)).

In total, we have collected 42 hearing loss patterns, where
each hearing loss category contained 7 patterns. Every cat-
egory was further divided into two groups, the larger group
with 5 patterns and the smaller one with the remaining 2 pat-
terns.
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Fig. 2. Hearing loss configurations. (a) Flat (b) Sloping (c)
Rising (d) Cookie-bite (e) Noise-notched (f) High-frequency.

3.3. Experimental setup

As mentioned earlier, HASA-Net takes the magnitude spec-
trum and the hearing-loss patterns as its inputs and outputs



the corresponding quality and intelligibility scores. Given a
training utterance, two hearing-loss patterns from the men-
tioned larger group were selected to form the corresponding
training set, which resulted in 4360 × 2 training utterances in
every category.

To evaluate HASA-Net’s generalization capability, we
considered two scenarios: seen and unseen test sets. The
seen test sets utilized the hearing-loss patterns selected from
the larger groups and were already presented in the train-
ing, whereas the unseen test set contained patterns from the
smaller groups that were not used in the training. Each cate-
gory included two hearing-loss patterns for seen and unseen
test sets, and both of them included the same testing utter-
ances. Therefore, there were 14,400 utterances in each of the
seen and unseen test sets.

The corresponding ground-truth values for quality and
intelligibility of HASA-Net were those calculated by HASQI
and HASPI, respectively. HASQI and HASPI are based on
an auditory model that incorporates changes due to hear-
ing loss, and then develop mathematical models that match
the corresponding quality and intelligibility scores. Both of
their metrics are scalars between 0 and 1, where a higher
score of HASQI and HASPI represents better speech qual-
ity and intelligibility. The stimuli were amplified using the
National Acoustics Laboratories revised (NAL-R) [36] linear
fitting prescriptive formula based on individual hearing-loss
patterns.

We use the RMSprop [37] optimizer with a learning rate
of 0.001 and early stopping technique to train HASA-Net.
To evaluate the performance, various criteria including mean
square error (MSE), linear correlation coefficient (LCC), and
Spearman’s rank correlation coefficient (SRCC) are selected.
In the follows, we first show the effects of the multi-head at-
tention mechanism introduced in Section 2.

3.4. Effects of multi-head attention mechanism

We present the effects of multi-head attention in HASA-Net
and set up a baseline model that we call HASA-NetDNN.
HASA-NetDNN replaces the multi-head attention mechanism
of HASA-Net with dense layers. Tables 1 and 2 clearly show
that HASA-Net outperforms HASA-NetDNN consistently on
the seen and unseen test sets across quality and intelligibility
predictions. For the quality estimation, HASA-Net outper-
forms HASA-NetDNN with notable {LCC, SRCC} improve-
ments of {0.0189, 0.0198} and {0.0206, 0.0197} for the seen
and unseen test sets, respectively. In addition, greater im-
provements are observed in the intelligibility predictions. For
instance, HASA-Net yields {LCC, SRCC} improvements of
{0.0536, 0.0386} as compared to HASA-NetDNN on the seen
test set. For the unseen test set, HASA-Net also outperforms
HASA-NetDNN with noticeable {LCC, SRCC} improve-
ments of {0.0469 and 0.026}. The significant performance
improvements of HASA-Net confirms the effectiveness of

multi-head attention mechanism for the proposed score pre-
dictions.

Table 1. Performance of quality prediction between HASA-
NetDNN and HASA-Net on seen and unseen test sets.

Seen Unseen

MSE LCC SRCC MSE LCC SRCC

HASA-NetDNN 0.0170 0.9092 0.9074 0.0177 0.9101 0.9097
HASA-Net 0.0108 0.9281 0.928 0.0108 0.9299 0.9294

Table 2. Performance of the intelligibility prediction between
HASA-NetDNN and HASA-Net on seen and unseen test sets.

Seen Unseen

MSE LCC SRCC MSE LCC SRCC

HASA-NetDNN 0.0422 0.8264 0.8783 0.0444 0.8195 0.8739
HASA-Net 0.0193 0.88 0.9169 0.022 0.8664 0.8999

3.5. Detailed assessment results

Next, we present the detailed assessment results of HASA-
Net for quality and intelligibility on the seen and unseen test
sets. Figs. 3 and 4 show the scatter plots with the correspond-
ing quality and intelligibility metrics. Each figure shows re-
sults from the seen and unseen test sets. The higher the LCC
and SRCC, the more accurately HASA-Net predicts the cor-
responding ground truths, indicating higher prediction accu-
racies. On average, HASA-Net achieves LCC of 0.9281 and
SRCC of 0.9280 on the seen test set for the quality estimation,
compared to 0.9299 and 0.9294 on the unseen test set. For the
intelligibility prediction, {LCC, SRCC} are {0.88, 0.9169}
and {0.8664, 0.8999} on the seen and unseen test sets, respec-
tively. In our experiments, HASA-Net shows a strong correla-
tion between the prediction scores and the ground truths with
LCC and SRCC above 0.9 for the quality estimation, and a
decrease around 0.86 to 0.92 for the intelligibility estimation.

0.0 0.2 0.4 0.6 0.8 1.0
True HASQI

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 H
AS

QI

MSE:0.0108, LCC:0.9281, SRCC:0.9280

(a) Seen

0.0 0.2 0.4 0.6 0.8 1.0
True HASQI

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 H
AS

QI

MSE:0.0108, LCC:0.9299, SRCC:0.9294

(b) Unseen

Fig. 3. Scatter plots for quality assessment by HASA-Net.
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Fig. 4. Scatter plots for the intelligibility assessment by
HASA-Net.

The above results show that intelligibility is more diffi-
culty to evaluate than quality, which may be caused by dif-
ferences in the sensitivity of HASQI and HASPI. The au-
thors in [38] pointed out that HASQI is much more sensitive
to noise and show that at 10 dB SNR level, HASPI is 0.99
which is almost close to 1, whereas HASQI is only about 0.3.
This is consistent with what we have found in our training
set where HASPI scores are much more likely to be close to
1 than HASQI scores. Fig. 5 illustrate the percentage allo-
cation of quality and intelligibility scores in the training set.
Provided that the same spectrum and hearing-loss patterns are
used, HASQI scores are distributed evenly from 0 to 1, while
around 14% and 54% of HASPI scores fall in the range of
0 to 0.1 and 0.9 to 1. This uneven HASPI score distribution
of training set brings difficulty to training process. Although
HASA-Net achieves slightly lower prediction performance of
intelligibility compared to that of quality, it is still promising
that HASA-Net has a significant chance to estimate values
close to the true intelligibility with average LCC and SRCC
of 0.8732 and 0.9084.

Table 3 and 4 provide further details of quality and intel-
ligibility prediction performance based on different types of
hearing loss. As mentioned above, HASA-net’s prediction
of intelligibility is not as good as its prediction of quality as
measured by LCC and SRCC on the seen and unseen test
sets. However, in the worse case, HASA-Net still achieves
{LCC, SRCC} around {0.8148, 0.8471} for the unseen ris-
ing hearing-loss patterns, which indicates that the estimated
scores still follows the trend of the true scores well. In ad-
dition, similar tendencies can be found in the quality and
intelligibility estimation. We observe that sloping and high-
frequency configurations show higher LCCs and SRCCs,
while lower LCCs and SRCCs are found in rising and cookie-
bite configurations.

Finally, HASA-Net achieves comparable results in both
quality and intelligibility on the seen and unseen test sets
across different types of hearing loss. Not surprisingly, the
seen test set outperforms the unseen for most types of hearing
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Fig. 5. Pie charts depicting the percentage allocation of qual-
ity and intelligibility scores according to training set.

loss. However, when considering the challenging test con-
ditions where the hearing-loss patterns are totally unseen, the
performance of HASA-Net continues to be quite strong, prov-
ing the robustness and generalization capability of HASA-
Net. In summary, our detailed analysis confirms the effec-
tiveness of HASA-Net.

Table 3. Performance of quality prediction of different types
of hearing loss on seen and unseen test sets.

Seen Unseen

Configuration MSE LCC SRCC MSE LCC SRCC

Flat 0.0113 0.9192 0.9155 0.0124 0.9186 0.915
Sloping 0.0067 0.9557 0.9421 0.0076 0.9517 0.9443
Rising 0.0138 0.8965 0.8908 0.0152 0.8897 0.8885
Cookie-bite 0.0156 0.8857 0.8875 0.0135 0.9118 0.9106
Noise-notched 0.0078 0.9434 0.9413 0.0088 0.9325 0.93
High-frequency 0.0094 0.9399 0.9373 0.0073 0.9527 0.9474

3.6. Single-task versus HASA-Net

In this section, we analyze the role of MTL. A single-task
model adopts the same architecture of HASA-Net, but out-
puts only one objective prediction. Table 5 and 6 show
the comparison results between the single-task model and
HASA-Net. From the tables, we can see that HASA-Net



Table 4. Performance of intelligibility prediction of different
types of hearing loss on seen and unseen test sets.

Seen Unseen

Configuration MSE LCC SRCC MSE LCC SRCC

Flat 0.0222 0.8237 0.8996 0.0247 0.8549 0.92
Sloping 0.0152 0.9128 0.889 0.0128 0.9179 0.9023
Rising 0.0338 0.8495 0.8593 0.0369 0.8148 0.8471
Cookie-bite 0.0176 0.8129 0.8947 0.029 0.8284 0.868
Noise-notched 0.0118 0.9163 0.9113 0.0125 0.8763 0.8884
High-frequency 0.0151 0.9068 0.9102 0.0161 0.91 0.9041

produces better results compared to the single-task model.
For quality prediction, the results of LCC and SRCC for the
single-task model are comparable with that of HASA-Net
on both seen and unseen test sets. A possible reason is that
the quality prediction already yields good performance, and
thus has less room for further improvement. On the other
hand, notable improvement from the single-task model to
HASA-Net can be noted in the intelligibility estimation. The
results show that MTL helps HASA-Net to learn more robust
and universal feature representations from different tasks.
The MTL scheme not only reduces overfitting to a specific
task but also boosts the intelligibility prediction performance.
Specifically, HASA-Net produces {LCC, SRCC} improve-
ments of {0.0377, 0.0292} and {0.029, 0.0272} for the seen
and unseen test sets, respectively, as compared to the single-
task model. In contrast to the single-task model, an additional
advantage of HASA-Net is its ability to predict quality and
intelligibility scores simultaneously. For applications with
limited computation and storage resources, HASA-Net is
definitely a better choice than multiple single-task models.

Table 5. Performance of quality prediction between single-
task and HASA-Net on seen and unseen test sets.

Seen Unseen

MSE LCC SRCC MSE LCC SRCC

Single-task 0.0132 0.9213 0.9221 0.0133 0.9237 0.9251
HASA-Net 0.0108 0.9281 0.928 0.0108 0.9299 0.9294

Table 6. Performance of intelligibility prediction between
single-task and HASA-Net on seen and unseen test sets.

Seen Unseen

MSE LCC SRCC MSE LCC SRCC

Single-task 0.0269 0.8423 0.8877 0.0285 0.8374 0.8727
HASA-Net 0.0193 0.88 0.9169 0.022 0.8664 0.8999

4. CONCLUSION

In this study, we have proposed a DNN-based speech assess-
ment model for listeners using hearing aids, which we call

HASA-Net. To the best of our knowledge, this is the first
end-to-end, non-intrusive unified model predicting hearing
aid speech quality and intelligibility simultaneously. Our
experimental results show that HASA-Net’s quality and in-
telligibility estimates are highly correlated with HASQI and
HASPI scores. We also demonstrated the superior perfor-
mance of HASA-Net as compared to the single-task model.
The end-to-end framework gave HASA-Net the capability
to directly combine with DNN-based speech signal process-
ing models for joint optimization. HASA-Net provides a
significant building block towards tackling various complex
challenges for the hearing-impaired, such as speech enhance-
ment, dereverberation, and separation. Future work includes
listening tests with hearing-impaired listeners to investigate
correlation of HASA-Net and human ratings.
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