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Abstract

The intelligibility of natural speech is seriously degraded when
exposed to adverse noisy environments. In this work, we pro-
pose a deep learning-based speech modification method to com-
pensate for the intelligibility loss, with the constraint that the
root mean square (RMS) level and duration of the speech signal
are maintained before and after modifications. Specifically, we
utilize an iMetricGAN approach to optimize the speech intel-
ligibility metrics with generative adversarial networks (GANs).
Experimental results show that the proposed iMetricGAN out-
performs conventional state-of-the-art algorithms in terms of
objective measures, i.e., speech intelligibility in bits (SIIB) and
extended short-time objective intelligibility (ESTOI), under a
Cafeteria noise condition. In addition, formal listening tests re-
veal significant intelligibility gains when both noise and rever-
beration exist.
Index Terms: intelligibility, generative adversarial networks,
speech modification

1. Introduction
Speech is the main media used by humans to communicate
in daily life. However, in speech application systems, the in-
telligibility of speech messages is inevitably degraded due to
background noise and reverberation. Several modification algo-
rithms have been studied to enhance the intelligibility by pre-
processing a signal before it is played out [?]. This task is usu-
ally termed near-end listening enhancement (NELE). There are
various strategies for NELE tasks, such as spectral tilt flatten-
ing [1], formant shifting [2], and dynamic range compression
[3, 4]. A common idea of the above algorithms is to reallocate
the speech energy in the time-frequency (T-F) domain in such a
way as to boost the acoustic cues that are perceptually crucial.

In this paper, we utilize deep neural networks (DNNs) to
reallocate the speech energy. The output of a DNN acts as scale
factor α, which is then multiplied to the T-F bin of the speech.
The T-F bin energy is boosted with α > 1 and suppressed oth-
erwise. This framework is very similar to the masking-based
speech enhancement approach [5], where spectral mask is pre-
dicted by NN and applied to the T-F bin as well. Although
NELE task shares a similar solution to DNN-based speech en-
hancement, very few related works have been done so far. One
of the biggest challenges with the DNN-based NELE approach
is that there is no ground truth label that can be provided for
supervised training. Specifically, given an unmodified plain
speech, there is no standard that explicitly defines what the per-
fectly intelligible speech should be, and thus no ground truth la-
bel can be prepared. In contrast, in a speech enhancement task,
clean speech without noise mixed can be easily prepared and
regarded as the training label of corresponding noisy speech.

Figure 1: Schematic diagram of NELE scenario.

Recently, MetricGAN [6] was proposed and shown to be
effective in optimizing the evaluation metrics in the field of
speech enhancement. Inspired by its success, we adapt it to a
modified iMetricGAN that fits in the intelligibility enhancement
task. iMetricGAN is a generative adversarial network (GAN)
system that consists of a generator to enhance the speech signal
as the intelligibility enhancement module and a discriminator to
learn to predict the intelligibility scores of modified speech. In-
stead of discriminating fake from real, the discriminator aims to
closely approximate the intelligibility metrics as a learned sur-
rogate, and then the generator can be trained properly with the
guidance of this surrogate. From another point of view, with
the framework of iMetricGAN, the ground truth speech label
can be implicitly defined as a modified speech that achieves
the maximum value of the intelligibility scores predicted by the
discriminator. Consequently, the proposed iMetricGAN can ef-
fectively optimize the intelligibility of speech even though no
ground truth label is provided. Furthermore, iMetricGAN is a
flexible language-independent framework that can be easily ex-
tended to optimize multiple metrics simultaneously.

2. Problem Formulation and Assumptions
Consider a real scenario of the NELE task, as depicted in Fig. 1.
Let s(n) be the original speech signal. A modification algo-
rithm is applied to s(n) before it is played out by the loud-
speaker and the processed output is denoted as s̃(n). The ob-
served signal y(n) at the listener end is thus given by

y(n) = h(n) ∗ s̃(n) + w(n) (1)

where ∗ denotes a convolution operation, h(n) is the room im-
pulse response (RIR)1, and w(n) is the additive background
noise. An assumption is made that the RIR h(n) and the
noise w(n) can be estimated with an acoustic echo cancellation
(AEC) technique [7]. Therefore, the general NELE task is for-
mulated as finding an algorithm to modify the natural speech to
improve its intelligibility in known noise and room conditions.

1Loudspeaker response is integrated into RIR for simplicity.
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(a) D training process

(b) G training process

Figure 2: The framework of iMetricGAN and its training process.

In this work, for simplicity, we take only the noise signal
w(n) into account and disregard h(n), the influence of rever-
beration. Meanwhile, we do not change the RMS level and the
duration of speech before and after modifications. With these
assumptions and constraints, the problem can thus be formu-
lated to design a DNN-based mapping function Φ(.), as

s̃ = Φ(s, w) s.t. RMS(s̃) = RMS(s),

Dur(s̃) = Dur(s)
(2)

where sample index n is omitted from this point forward and
Dur(.) denotes the duration of the signal. It takes as input the
unprocessed speech s and the noise signal w. The output s̃ after
modification is more intelligible when masked with noise.

3. Proposed iMetricGAN Model
In the field of speech enhancement, MetricGAN [6] has
shown a powerful ability to optimize complex and even non-
differentiable speech quality metrics, such as PESQ [8]. The
proposed iMetricGAN adapts and revises the original Metric-
GAN for the intelligibility enhancement task, where the target
metric to be optimized is the speech intelligibility measure.

3.1. Selecting intelligibility measures

Objective measures are designed to predict the intelligibility
score of speech. We select SIIB [9] and ESTOI [10] measures
as our optimization targets because they have achieved state-of-
the-art performance (i.e., high correlations with listening tests),
as demonstrated in [11]. Both of these measures require refer-
ence and degraded signals as inputs for assessing relative intel-
ligibility difference. To be specific, the reference is the original
speech s, and the degraded signal is s̃+w. Objective intelligibil-
ity scores can thus be rated by the measures. Nevertheless, they
cannot be directly set as the training targets for a DNN system,
since both measures are quite complex and non-differentiable.
Hence, we utilize iMetricGAN to overcome this obstruction.

3.2. Model description and training process

The model framework is depicted in Fig. 2. It consists of a
generator (G) network and a discriminator (D) network. G re-
ceives speech s and noise w and then generates the enhanced
speech. An energy normalization layer is inserted to guarantee

the energy is maintained after modification. The final processed
speech is notated as G(s, w). The cascading D is utilized to
predict the intelligibility score of the enhanced speech G(s, w),
given s and w. The output of D is notated as D (G(s, w), s, w)
and expected to be close to the true intelligibility score calcu-
lated by a specific measure. We introduce the function Q(.) to
represent the intelligibility measures to be modeled, i.e., SIIB
and ESTOI. With the above notations, the training target of D,
shown in Fig. 2 (a), can be represented to minimize the follow-
ing loss function:

LD = Es,w[(D(G(s, w), s, w) −Q(G(s, w), s, w))2] (3)

Moreover, we introduce ŝ, the signal example that is enhanced
by reference modification algorithms such as SSDRC [3], in
the D training process. The loss function is thus extended to
Equation (4).

LD = Es,w[(D(G(s, w), s, w) −Q(G(s, w), s, w))2

+ (D(ŝ, s, w) −Q(ŝ, s, w))2]
(4)

The motivation for introducing ŝ is to improve the generaliza-
tion of D. By feeding it with not only G(s, w) but also the sig-
nals modified by various other algorithms, D is encouraged to
predict the intelligibility scores in a more accurate way. Thus
Equation (4) can be seen as the loss function with auxiliary
knowledge, while Equation (3) is the loss function with zero
knowledge. Note that ŝ should not be regarded as the ground
truth or the training label. In fact, the experimental results in
Section 5 demonstrate that iMetricGAN still works well even
without introducing ŝ.

For the G training process shown in Fig. 2 (b), D’s param-
eters are fixed and G is trained to reach intelligibility scores as
high as possible. To achieve this, the target score t in Equa-
tion (5) is assigned to the maximum value of the intelligibility
measure.

LG = Es,w[(D(G(s, w), s, w) − t)2] (5)

G and D are iteratively trained until convergence. G acts
as an enhancement module and is trained to cheat D in order to
achieve a higher intelligibility score. On the other hand, D tries
to not be cheated and to accurately evaluate the score of the
modified speech. This minimax game finally makes both G and
D effective. Consequently, the input speech can be enhanced to
a more intelligible level by G.



Table 1: SNRs (dB) of matrix sentences under different condi-
tions

Intelligibility 25% 50% 75%

English
Near –12 –7.5 –3
Mid –4 +2 +8
Far –2 +4 +10

German
Near –15 –12.5 –10
Mid –9 –6 –3
Far –9 –5 –1

Spanish
Near –18.5 –15.5 –12.5
Mid –12 –9 –6
Far –12 –8 –4

4. Experimental Setup
4.1. Data preparation

The data used in our experiments were provided by the Hur-
ricane Challenge 2 (https://hurricane-challenge.inf.ed.ac.uk/).
Three languages are considered (English, German, Spanish)
and 290 matrix sentences are available (100 each for German
and Spanish; 90 for English). Sentences were uttered by na-
tive speakers under 3 reverberation conditions (Near, Mid, and
Far). For each reverberation, sentences were presented with 3
different SNRs corresponding to three intelligibility levels: ap-
proximately 25%, 50%, and 75% correctly understood words.
The detailed configuration is provided in Table 1. Since we ig-
nore the influence of reverberation, there are actually 9 SNRs
for each sentence per language. All signals are sampled at 44.1
kHz and the masker signal is Cafeteria noise.

We chose German and Spanish speech as the training set,
with a total of 900 sentences (100 sentences × 9 SNRs) for
each language. Also, for data augmentation, we extracted 1,720
external sentences: 720 Spanish from the Sharvard corpus [12]
and 1000 German from the EMIME corpus [13]. Each of them
was resampled to 44.1 kHZ and mixed with masker signals at
six different SNR levels (randomly selected from 9 correspond-
ing SNRs) in order to form 10,320 extra sentences. In total,
12,120 German and Spanish sentences were used for training.
We did not include English speech as training data since we
wanted to investigate a language-mismatched condition as well
as language-matched conditions. The 810 English sentences
(90 sentences × 9 SNRs) were used for testing only. To pre-
pare the enhanced signal example ŝ introduced in Section 3.2,
we selected three reference algorithms: (1) OptSII [14], a lin-
ear filter to maximize the Speech Intelligibility Index (SII), (2)
OptMI [15], a linear filter to optimally redistribute energy based
on mutual information criterion, and (3) SSDRC [3], a method
to integrate spectral shaping and dynamic range compression.
Each training sentence was randomly processed by one of these
three algorithms to obtain its enhanced example.

4.2. Model architecture

All input signals are first transformed to magnitude spectro-
grams by short-time Fourier transform (STFT). A 1024-point
Hanning window with 512-point hop size is applied and re-
sults in 513 frequency bins. Power-law compression [16] with
parameter p = 0.3 is followed to compress spectrograms.
We concatenate the spectrograms of input speech and masker
noise to form 1026-dimensional (513×2) input features for
iMetricGAN. After modification, the processed spectrogram
is converted into a time-domain waveform using inverse STFT

with the phase of the input speech.
The generator model G is composed of two BLSTM layers,

each with 400 hidden nodes, and two fully connected layers,
each with 600 nodes. The activation function for the first fully
connected layer is LeakyReLU with slope = 0.3, and the last
output layer is set as follows:

output = exp (1.5 + 4 ∗ tanh(m)) (6)

where m is the result of the previous layer. This output serves
as scale factors, which are point-wise multiplied with the in-
put spectrogram (unmodified speech) to produce an enhanced
spectrogram. Scale factors modify the input speech by redis-
tributing its energy: the T-F bin is boosted or declined with the
corresponding scale value. The scale range of Equation (6),
which is approximately 0.08 to 255, is empirically chosen. We
expect such a wide range will facilitate the processing ability of
G. Once processed by G, the enhanced spectrogram is normal-
ized by the energy normalization layer, where the total squared
energy of the output spectrogram is normalized to be the same
as that of the input. The final processed spectrogram is sequen-
tially passed on to the network D.

As shown in Fig. 2, the input features for D are 3-channel
spectrograms, i.e., (processed, unprocessed, noise). D consists
of five layers of 2-D CNN with the following number of fil-
ters and kernel size: [8 (5, 5)], [16 (7, 7)], [32 (10, 10], [48
(15, 15)], and [64 (20, 20)], each with LeakyReLU activation.
Global average pooling is followed by the last CNN layer to
produce a fixed 64-dimensional feature. Two fully connected
layers are successively added, each with 64 and 10 nodes with
LeakyReLU. The last layer of D is also fully connected and its
output represents the scores of the intelligibility metrics. There-
fore, the number of nodes in the last layer is equal to that of the
intelligibility metrics we consider. For example, if we have D
predict SIIB and ESTOI scores simultaneously, it should be set
to 2. We normalize the SIIB score so that it ranges from 0 to
1, which is consistent with the range of the ESTOI score. Since
both metrics of interest are bounded in [0, 1], the sigmoid ac-
tivation function is used in the last layer. Similar to [6], all
the layers in D are constrained to be 1-Lipschitz continuous by
spectral normalization [17] to stabilize the training process2.

5. Results
5.1. Notations of different modification methods

As described in Section 3.1, we have different options for learn-
ing metrics (SIIB, ESTOI, or both). In addition, two loss func-
tions, Equations (3) and (4), can be chosen in the training pro-
cess, depending on the use of enhanced examples. Therefore,
we built and compared the iMetricGAN model with three dif-
ferent variations3. To explain them, we use the following nota-
tions.

• SiibGAN-zs: Learning target is SIIB, with Equation (3)
as the loss function. Since there is no enhanced example
provided in this loss function, the model is trained in a
zero-short (zs) manner.

• SiibGAN: Learning target is SIIB, with Equation (4) as
the loss function.

• MultiGAN: Learning target includes multiple metrics,
SIIB and ESTOI, with Equation (4) as the loss function.

2Source codes of this work are available at https://github.
com/nii-yamagishilab/intelligibility-MetricGAN

3Audio samples of the tested systems are available at https://
nii-yamagishilab.github.io/samples-iMetricGAN



Table 2: Average intelligibility scores on English test set under
Cafeteria noise.

Algorithms ESTOI SIIB

Plain 0.305 0.390

OptMI 0.423 0.591
OptSII 0.416 0.623
SSDRC 0.473 0.647

SiibGAN-zs 0.386 0.660
SiibGAN 0.413 0.692

MultiGAN 0.476 0.689

5.2. Objective evaluations

In addition to different iMetricGAN variants, three reference
algorithms (OptMI, OptSII, SSDRC) used to produce enhanced
examples were evaluated. Experimental results (SIIB and ES-
TOI) are presented in Table 2.

As shown, with modifications, the intelligibility scores of
unmodified plain speech were effectively improved. Among
all testing algorithms, MultiGAN had the best overall perfor-
mance considering both ESTOI and SIIB scores, as expected.
It surpassed the state-of-the-art SSDRC approach as well as
OptMI and OptSII. By optimizing multiple metrics, it signifi-
cantly outperformed another two iMetricGAN variants in terms
of ESTOI, with only a slightly lower SIIB score compared to
SiibGAN. For the SiibGAN-zs approach, the performance was
degraded because the D network cannot be well trained using
a zero-shot approach. Even so, it brought a significant intel-
ligibility gain to plain speech, which further demonstrates the
effectiveness of our proposed iMetricGAN model.

5.3. Subjective evaluations

Formal listening tests were conducted using the framework of
the Hurricane Challenge 2. We submitted the entry of the Multi-
GAN algorithm, since it achieved the best performance in the
objective evaluations. These listening tests took into account
the sentences of three languages (English, German, Spanish)
combined with different SNR and reverberation conditions. The
SNRs used in the final tests were slightly different from those
listed in Table 1 due to technical reasons4. Note that all pro-
vided languages and reverberations were considered in the sub-
jective tests, while only English sentences without reverberation
were used for the objective evaluation described in the previous
section. We returned only the modified (enhanced) speech to
the challenge organizers. These modified speech signals were
remixed with noise and RIR by organizers, and then evaluated
by native listeners. The masker signal was still Cafeteria noise
but not a sample-by-sample equivalent of the signals we used in
the training phase. Specifically, more than 180 listeners (>60
for each language) were asked to type in what they heard in the
experiments. Word accuracy rate, i.e., the percentage of correct
words in a transcription, was then calculated as the performance
measure of intelligibility.

Figure 3 shows the results for different listening conditions.
Our proposed iMetricGAN achieved significant intelligibility
gains in each language under all SNR and reverberation con-
ditions. Note that we disregarded the influence of RIR when
building the iMetricGAN model, but it still worked quite well
in reverberant environments.

4Hurricane Challenge organizers adjusted the SNRs to allow for suf-
ficient headroom in which the entries could show their performance.

(a) Word accuracy in English

(b) Word accuracy in German

(c) Word accuracy in Spanish

Figure 3: Average word accuracy for plain and iMetricGAN-
based modified speech in three languages under different SNR
and reverberation conditions.

5.4. Discussions
In Fig. 3 (a), we can see that the word accuracy was improved
for the English test set even though English sentences were not
included in the training set. This demonstrates the good gener-
alization capability of the iMetricGAN model, which can gen-
eralize well to mismatched language, speaker, and SNR level
conditions. Future work will include the real-time implemen-
tation of iMetricGAN. To achieve this, we should change the
original BLSTM to the uni-directional version and use noise
power spectral density (PSD), which can be feasibly estimated
as input noise information, instead of a raw noise signal. In
the real-time inference stage, no global energy constraint can
be guaranteed since the future signal values are not available,
while the volume of speech can be adaptively maintained in a
proper way by utilizing the automatic gain control (AGC) tech-
nique [18]. Another future direction will involve introducing
more advanced intelligibility metrics such as HASPI [19] and
HEGP [20] to the model training. We also plan to investigate
ways of integrating speech quality metrics such as PESQ to en-
hance the quality of the modified speech.

6. Conclusion
In this paper, we proposed the iMetricGAN model to enhance
the intelligibility of speech-in-noise. Objective results show that
our approach outperforms the state-of-the-art SSDRC method
in terms of SIIB and ESTOI scores. Large-scale formal listen-
ing tests further show its effectiveness in intelligibility enhance-
ment across different languages and background environment
conditions.
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