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ABSTRACT

The most recent studies on deep learning based speech en-
hancement (SE) are focused on improving denoising perfor-
mance. However, successful SE applications require require
striking a desirable balance between the denoising perfor-
mance and computational cost in real scenarios. In this study,
we propose a novel parameter pruning (PP) technique, which
removes redundant channels in a neural network. In addition,
parameter quantization (PQ) and feature-map quantization
(FQ) techniques were also integrated to generate even more
compact SE models. The experimental results show that the
integration of PP, PQ, and FQ can produce a compacted SE
model with a size of only 9.76 % compared to that of the
original model, resulting in minor performance losses of 0.01
(from 0.85 to 0.84) and 0.03 (from 2.55 to 2.52) for STOI and
PESQ scores, respectively. These promising results confirm
that the PP, PQ, and FQ techniques can be used to effectively
reduce the storage of an SE system on edge devices.

Index Terms— Compactness, Parameter Pruning, Pa-
rameter Quantization, Low Computational Cost

1. INTRODUCTION

The goal of speech enhancement (SE) is to generate enhanced
speech with better quality and intelligibility over the original
noisy speech with many SE methods having been proposed
in the past. Traditional SE approaches are derived from the
characteristics of speech and noise signals; well-known ex-
amples include the spectral subtraction [1], Wiener filter [2],
short-time spectral amplitude estimators [3], and maximum-
likelihood spectral amplitude [4] algorithms. These tradi-
tional approaches perform well when the assumed proper-
ties of speech and noise signals are maintained. However,
their performance degrades notably when dealing with non-
stationary noises or in very low signal-to-noise ratio (SNR)
conditions.

Recently, deep learning algorithms have been successfully
introduced to the SE field [5]. Generally, a deep-learning
model is used as a mapping function with the aim of trans-
forming noisy speech into clean speech. Notable approaches
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include the deep denoising auto-encoder (DDAE) [6], deep
fully-connected neural network [7], convolutional neural net-
work (CNN) [8], and long short-term memory model (LSTM)
[9]; all of these models have shown promising results for
transforming noisy spectral features into clean ones. More
recently, several studies proposed the use of convolutional
structures for speech and audio signal analysis and recon-
struction [10, 11, 12, 13, 14], and thus the SE tasks can be
carried out in the time domain. One well-known model is the
fully convolutional neural network (FCN), which consists of
multiple filters, each formed by plural channels [10, 11].

Numerous studies have confirmed the outstanding denois-
ing capability of deep learning-based methods, especially un-
der more challenging conditions (e.g., non-stationary noises
and low SNR conditions). However, a notable disadvantage
of deep learning-based solutions is the requirement of a large
storage space for the SE models, which makes them difficult
to implement for devices with limited resources. In [25], an
effective teacher-student architecture is proposed where the
outputs from a large, high-performance deep neural network
(DNN) are used to guide the training of a smaller DNN model
in a sequential or multi-task transfer learning manner. This
paper, however, proposes two techniques, namely parame-
ter pruning (PP) and parameter quantization (PQ), that aim
to directly increase the compactness of a well-trained deep
learning-based SE models. The PP technique removes redun-
dant channels, while the PQ technique groups and represents
similar weights using a cluster centroid. To evaluate the effec-
tiveness of these two techniques, we used the TIMIT database
[15] with several noise sources.The experimental results show
that both PP and PQ techniques can effectively improve the
model compactness with modest degradations in quality and
intelligibility. intelligibility.

2. RELATED RESEARCH

Many algorithms have been derived to increase the compact-
ness of neural network models, such as pruning, sparse con-
straints, and quantization. Pruning algorithms are designed to
reduce the network complexity and address overfitting [16] by
reducing redundant components. The approaches that utilize
sparse constraints build compact models by reducing trivial



filters in the original deep-learning models [17]. Quantization
algorithms, on the other hand, compress the size of the origi-
nal network by reducing the number of bits required to repre-
sent each weight [18, 19]. These aforementioned model com-
pression methods significantly reduced memory usage with
only a modest loss in recognition accuracy.

Based on our literature survey, only a few studies have
investigated potential approaches to increase the compactness
of SE models. Sun and Li proposed the use of a quantization
technique to increase the compactness of an SE model [20].
Ko et al. investigated the correlation of precision scaling and
neuron numbers in an SE model [21]. In [22], a two-stage
quantization approach was derived to optimally reduce the bit
number when the parameters are encoded in floating point
representation. In the present study, the PP technique adopts
a different and novel concept that directly removes redundant
channels to form a compact FCN model. The size of this
model is then reduced further with the PQ technique.

3. THE PROPOSED PP AND PQ TECHNIQUE

This section introduces the proposed PP and PQ techniques,
as well as their integration.

3.1. Parameter Pruning (PP) Technique

3.1.1. FCN-based Waveform Mapping
Figure 1(a) shows the process of the waveform mapping based
on the FCN model. In the figure, we have J filters: { F1, F2,
..., FJ}; Fj ∈ RL×I is the j-th filter, and Fji ∈ RL×1 is the
i-th channel of Fj . Fji = ( w1, w2, ..., wL )L×1 where wl is
the channel weight. It is assumed that the receptive field and
output sample of filter Fj is R(t) ∈ RL×I and yj(t), respec-
tively. The resulting convolution operation is:

yj(t) =

I∑
i=1

FT
jiRi(t). (1)

3.1.2. Definition of Sparsity

We estimate the redundancy based on the sparsity [17] of each
channel in a filter. For filter Fj in an arbitrary layer, we first
compute the mean absolute value of all filter weights:

MFj
=

∑
I(
∑

L |w|)
I × L

, (2)

where I and L are the channel number in a filter and weight
number in a channel, respectively; w is a weight parameter.
The sparsity of the i-th channel of Fj can then be defined as:

S(i) =

∑L
l=1 σ(wl)

L
, (3)

σ(X) =

{
1, if |X| < MF j

0, otherwise.
(4)

When S(i) is close to 1, most of weights in a channel are
smaller than MFj

, and thus the channel is considered redun-
dant.

Fig. 1. The PP process: (a) original model; (b) pruned model,
and (c) the pruning and retraining process.

3.1.3. Channel Pruning

In the PP technique, the pruning mechanism contains a re-
training step. As shown in Fig.1.(c), if the sparsity S(k) in
some channels Fjk are larger than a predefined threshold θ,
the weights within the channel Fjk are set to zero. Next, we
retrain the model and remove Fjk after several iterations. As
shown in Fig.1.(b), we can obtain F

′
as the channel-pruned

filters. Because F
′

ji is reduced, R
′

i(t) is reduced accordingly.
Finally, the output can be computed as follows:

y
′

j(t) =

I−K∑
i=1

F
′T
ji R

′

i(t), (5)

where K is the number of pruned channels. This PP tech-
nique ensures that the compacted model remains stable after
the pruning steps, while the retraining steps make models ad-
justable to the zero-weighted channels. We believe that this
approach, unlike other pruning methods that directly remove
filters, can effectively prevent severe performance drops.

3.2. Parameter Quantization (PQ) Technique
In this study, the PQ is carried out based on the k-means al-
gorithm. By applying the k-means algorithm, the parameters
in a neural network model are grouped into several clusters,
where each cluster of parameters shares a centroid value. Fig.
2 shows an example of the k-means-based PQ process. In
this figure, each weight parameter in the original model is
represented by a 32-bits floating point number. By applying
the k-means with k=4, we can obtain a look-up table with 4
cluster centroids. Each weight in the model is then denoted
with a cluster index that is linked to the corresponding cluster
centroid. Therefore, the 10 weights (each represented as a 32-
bit floating point number) in the original model can be repre-
sented with 4 cluster indices and 4 centroids. The correspond-
ing compression rate is: (10 ∗ 32)/(4∗32 + 2∗10) = 2.16.



Fig. 2. An example of the PQ technique.

3.3. Integration of PP and PQ

Although both methods aim to increase the model compact-
ness, the PP and PQ techniques are derived based on differ-
ent concepts. The compatibility of these two techniques were
analyzed accordingly. The PP is applied to remove redun-
dant channels and establish a compact SE model, and the PQ
is subsequently used to further quantize the model parame-
ters. Note that the proposed PP and PQ can be combined with
other existing model compression techniques. In this study,
we tested the compatibility of the PP and PQ with a feature-
map quantization (termed FQ) technique. More specifically,
the FCN model is first processed by PP and PQ; then, the
input values and feature maps are further quantized to lower
precision. The results of the integration of PP, PQ, and FQ are
reported in Section 4.

4. EXPERIMENTS

In this section, we first introduce the experimental setup and
exhibit the experimental results.

4.1. Experimental Setup

The TIMIT corpus was used to prepare the training and test
sets. All 4620 utterances in the TIMIT training set were se-
lected as training data. These utterances were corrupted with
five noise types (Babble, Car, Jackhammer, Pink, and Street)
at five SNR levels (-10 dB, -5 dB, 0 dB, 5 dB, and 10 dB).
100 utterances were then randomly selected from the TIMIT
testing set to be used as the testing data. These utterances
were artificially corrupted with three additional noise types
(Babycry, White, and Engine) at four SNR levels (-12 dB,
-6 dB, 0 dB, and 6 dB). Note that we intentionally designed
mismatching noise types and SNR levels for training and test-
ing conditions in order to simulate a more realistic scenario.
All of the speech and noise signals were recorded in a 16
kHz/16 bit format. We evaluated the PP and PQ techniques
with the following standardized metrics: perceptual evalua-
tion of speech quality (PESQ) [23] and short-time objective
intelligibility (STOI) [24]. PESQ measures the quality of the
processed speech by assigning a score ranging from 0.5 to
4.5; a higher PESQ score denotes better speech quality. STOI
measures speech intelligibility by assigning a score ranging
from 0 to 1; a higher STOI score denotes better intelligibility.

We followed the setup in [11] to build the FCN-based
SE system. The FCN model had 7 hidden layers; each layer
containing 30 1-D convolutional filters (with the size of 55).
The last layer contained only 1 filter. Batch normalization
with mode-2 and the Leaky-ReLU activation function were
used. The parameters were trained using the Adam optimizer.
Without compression, the FCN model obtained 2.55 and 0.85
PESQ and STOI scores, respectively. For comparisons pur-
poses, a fully connected network SE system was built, whose
model architecture and training setup were the same as that
used in [7]. The model had three dense layers of 2048 neu-
rons and used the ReLU activation function. The dropout pro-
cess was applied, with a rate of 0.2. One dense layer, with a
linear activation function, was used to generate the enhanced
speech. The Adam optimizer was used to estimate the model
parameters. When using such a fully connected network, the
PESQ and STOI scores were 2.32 and 0.83, respectively.

4.2. Experimental Results

4.2.1. Parameter Quantization (PQ)

For the PQ technique, the number of clusters k was set to 2,
4, 8, 16, 32, and 64, and the corresponding PESQ and STOI
results are shown in Fig. 3 (a) and (b), respectively. It is clear
that the scores of both PESQ and STOI decrease when the
cluster number k is reduced. In practical SE applications, per-
formance and computational cost must be considered simul-
taneously. Thus, we may first define a bound for acceptable
performance drop (BAPD) and continue reducing the num-
ber of clusters until the evaluation scores fall below the de-
fined bound. In this experiment, we consider this BAPD to
be the average score of the results produced with the origi-
nal SE model and that of noisy speech. Using Fig.3(a) as an
example, the PESQ scores for noisy speech and FCN with-
out pruning were 2.15 and 2.55, respectively. The BAPD was
then defined as (2.15+2.55)/2 = 2.35. Figs. 3(a) and (b) show
that the PESQ and STOI scores are similar with BAPD when
k>4. Note that the BAPD value used in the present study is
just an example. Users can arbitrarily specify the BAPD value
to meet the hardware requirements.

(a) PESQ (b) STOI

Fig. 3. The average PESQ and STOI scores yielded from the
PQ technique with different numbers of clusters. BAPD de-
notes the bound for acceptable performance drop.



4.2.2. Parameter Pruning (PP)

When implementing the PP technique, the sparsity threshold
gradually reduced from 1 (i.e., without conducting PP) to 0.60
with a step size of 0.05. The model was retrained after each
sparsity threshold reduction. The PESQ and STOI results are
shown in Fig. 4 (a) and (b), respectively. The resulting STOI
scores show a clear drop when the sparsity threshold was de-
creased from 0.65 to 0.60, while PESQ scores were slightly
increased. In Table 1, we listed the correlation between the
sparsity threshold and the removal ratio in the SE model. The
results in Table 1 show that the corresponding removal ratio
is 21.8% when the sparsity threshold is set to 0.65.

(a) PESQ (b) STOI

Fig. 4. The average PESQ and STOI scores yield by the PP
technique with different sparsity threshold values. BAPD de-
notes the bound for acceptable performance drop.

Table 1. Correlation of sparsity threshold and removal ratio,
and the number of remaining parameters in the SE model.
Sparsity threshold Removal ratio Remaining parameters

1.00 0.00% 300,300
0.70 14.0% 258,170
0.65 21.8% 234,850
0.60 26.4% 221,155
0.55 36.8% 189,640

4.2.3. The Integration of PP and PQ

Whether the integration of the PP and PQ techniques can pro-
vide an even more compact SE model was also investigated.
Based on our preliminary experiments, a more effective order
of integration is to use PP followed by PQ. From the results
in Fig. 4, setting the sparsity threshold as θ=0.65 can still
return reasonably satisfactory performance. Therefore, we
tested the integration of the PP technique with θ=0.65 and the
PQ technique by varying the number of clusters. The results
are shown in Fig. 5 with the notation of ”PP+PQ”. From the
figure, we note that the systems with θ=0.65 suffered consid-
erable performance drops when k=8, while the system with
θ=0.65 and k=16 achieved the optimal balance between de-
noising performance and computational cost: The size of the
compacted SE model was only 9.76 % as compared with that
of the original model, where the STOI score was reduced by
0.01 (from 0.85 to 0.84) and the PESQ score was reduced by
0.03 (from 2.55 to 2.52).

In addition to PP and PQ, FQ was also applied, which
quantizes the original 32 bits into 16 bits. The results

of using FQ are also listed in Fig. 5 with the notation of
”PP+PQ+FQ”. From the figure, we note that with FQ, there
is no clear degradation (the orange bars of ”PP+PQ” and blue
bars of ”PP+PQ+FQ” are almost the same), confirming the
compatibility of PP and PQ with FQ. Note that by applying
FQ, the bit number of centroids for the PQ is reduced to
50%.1 We also tested FQ to quantize the feature-map to 8
bits, but the performance degraded notably. Owing to the
space limitation, we did not report the 8-bit results in Fig. 5.

(a) PESQ (b) STOI

Fig. 5. The average PESQ and STOI scores achieved by
PP+PQ (orange bar) and PP+PQ+FQ (blue bar) .

5. CONCLUSION

We propose utilizing the PP and PQ techniques to increase the
compactness of the FCN model for performing time-domain
SE. The main contribution of this study is two-fold. First, to
the best of our knowledge, the PP technique is the first tech-
nique that directly removes redundant channels in the FCN
model. Second, we have shown that by applying PP, PQ, and
an integration of PP and PQ effectively reduces the model
size with only a modest performance drop. The results sug-
gest that PP and PQ techniques can facilitate an SE system
with a compact structures to be installed in edge devices that
have lower storage. Note that although compression tech-
niques for deep-learning models applied to pattern recogni-
tion (classification) tasks have been extensively studied, only
few works have addressed model compression for signal re-
gression tasks. Because of their different output formats, the
effects of model compression on regression tasks are very dif-
ferent from that on classification tasks. This study is a first for
investigating the effects of model pruning/quantization on the
SE task (a regression task), and the results can be used as
a useful guidance for future SE studies. Moreover, we have
confirmed the compatibility of the PP and PQ with FQ, an-
other model quantization technique that applies quantization
on inputs and feature-map parameters. In this study, attention
was focused toward handling additive noises. Future work
will aim to explore the applications of the proposed pruning
and quantization techniques on deep learning models for more
complicated tasks where additive noise, reverberation and dis-
tant talking effects, are all present simultaneously.

1The codes, trained FCN models, and dataset used in this study are avail-
able via: https://github.com/WilliamYu1993/ICSE
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