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Abstract—This paper presents the clinical results of the 

application of a deep-learning-based noise reduction (NR) 

approach to improve speech intelligibility for cochlear im-

plant (CI) recipients in the presence of competing speech 

noise. The deep denoising autoencoder (DDAE) model was 

used as a representative deep-learning-based NR model to 

reduce the noise components from the noisy input. The en-

hanced speech was subsequently played to six Mandarin-

speaking CI recipients to perform recognition tests. All the 

subjects used their own clinical speech processors during 

testing. Two traditional NR approaches were also imple-

mented to test the performance for a comparison. The Tai-

wan Mandarin version of the hearing in noise test 

(TMHINT) sentences were adopted and further corrupted 

by competing two talker speech noise at signal-to-noise ra-

tio (SNR) levels of 0 and 5 dB. The experimental results 

showed that the DDAE NR approach can yield higher in-

telligibility scores than the two classical NR techniques in 

the presence of competing speech. The results of qualitative 

analysis further showed that the DDAE NR approach no-

tably reduced the envelope distortions. The good results 

also suggest that the proposed DDAE NR approach can 

combine well with the existing CI processors to overcome 

the issue of degradation of speech perception, which is 

caused by competing speech noise.  

I. INTRODUCTION 

In a cochlear implant (CI) device, a noise reduction (NR) unit 

is usually adopted to process the input speech in order to pro-

vide enhanced speech with high intelligibility and quality. In 

the past, various NR techniques have been proposed, such as 

log minimum mean squared error (logMMSE) [1], Wiener fil-

ter [2], generalized maximum a posteriori spectral amplitude [3] 

estimation, and Karhunen-Loéve transform (KLT) [4, 5]. Most 

of these NR techniques were developed by exploring the statis-

tical properties of speech and noise signals [6]. Although these 

NR approaches achieved satisfactory performance in stationary 

noisy environments, their performances may be notably de-

graded in non-stationary noisy environments, where the acous-

tic statistics for each small time period were varied dramati-

cally [7]. In a previous study, several NR methods were evalu-

ated with Mandarin CI recipients [8]. Even though the results 

indicated that these NR approaches can provide notable bene-

fits to CI recipients under stationary noise, there is a significant 

scope for the performance of NR to be prompted under chal-

lenging listening conditions. 

Recently, deep-learning-based NR approaches were de-

veloped and they exhibited outstanding performance in various 

NR tasks [7, 9-15]. These approaches adopt multiple layers of 

non-linear transformation to characterize the mapping function 

from noisy to clean speech signals. The deep denoising autoen-

coder (DDAE) is a well-known deep-learning-based NR ap-

proach [10]. Previous studies have confirmed that the DDAE 

NR approach outperforms conventional NR approaches [e.g., 

minimum mean squared error (MMSE) plus a standard noise 

tracking approach [16] in terms of several standardized objec-

tive evaluations [10]. More recently, Lai et al. [17] tested the 

performance of DDAE NR with vocoded speech, which was 

derived to simulate the CI recipients. The results showed that 

the DDAE NR approach outperforms conventional NR tech-

niques in terms of both objective evaluations and subjective lis-

tening tests with normal hearing participants under non-station-

ary noise conditions. In the present study, we further investi-

gate the clinical effectiveness of the DDAE NR approach with 

real CI recipients under challenging noise types and signal-to-

noise ratio (SNR) levels.  

II. DDAE-BASED NR APPROACH 

Given the speech signal, 𝒙, and noise signal, 𝒏, the noisy signal, 

𝒚, can be formulated as: 

𝒚 = 𝒙 + 𝒏.
 

(1) 

The goal of NR is to estimate the enhanced speech signals 

𝒙 from 𝒚, where 𝒙 is close to 𝒙. A class of conventional NR 
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Figure 1. DDAE-based NR system. 

 

approaches design filters with the aim to minimize a specific 

distortion measure between the original noise-free signal and 

the enhanced counterpart, such as logMMSE [1] and Wiener 

filter [2]. Another class of approaches divides the noisy signal 

into two subspaces (clean and noise) and subsequently mini-

mizes the noise components appearing in the clean subspace. 

Well-known techniques include singular value decomposition 

[18] and KLT [4, 5]. In the present study, we conducted exper-

iments using logMMSE and KLT for comparison with the 

DDAE NR approach. These approaches have been confirmed 

to yield satisfactory speech intelligibility improvements for 

Mandarin CI patients under noisy conditions effectively [8]. 

The overall structure of the DDAE NR model is illustrated 

in Fig. 1. There are two phases in the DDAE NR approach: 

offline and online. In the offline phase, a set of noisy-clean 

speech pairs is prepared. Both the noisy and clean speech sig-

nals are first converted into log power spectrum (LPS) features. 

The noisy (𝒀𝑚
𝐿𝑃𝑆) and clean (𝑿𝑚

𝐿𝑃𝑆 ) LPS features are subse-

quently placed at the input and output sides of the DDAE 

model, where m denotes the frame index. For a DDAE model 

with 𝐿 hidden layers, we obtain: 
 

ℎ1(𝒀𝑚
𝐿𝑃𝑆) = 𝜎(𝑾1𝒀𝑚

𝐿𝑃𝑆 + 𝒃1), 

(2) 
⋮ 

ℎ𝐿(𝒀𝑚
𝐿𝑃𝑆) = 𝜎(𝑾𝐿−1ℎ𝐿−1(𝒀𝑚

𝐿𝑃𝑆) + 𝒃𝐿−1), 

�̂�𝑚
𝐿𝑃𝑆 = 𝑾𝐿ℎ𝐿(𝒀𝑚

𝐿𝑃𝑆) + 𝒃𝐿, 

 

where {𝑾1…𝑾𝐿} are the matrices of the weights; {𝒃1…𝒃𝐿} 
are the bias vectors; �̂�𝑚

𝐿𝑃𝑆 is the vector that contains the LPS 

features of restored speech corresponding to the noisy input 

𝒀𝑚
𝐿𝑃𝑆 ; 𝜎 (·) denotes the activation function, and the logistic 

function is used in this study. Finally, the parameters 𝜃 (includ-

ing the matrices of the weights and the bias vectors) are deter-

mined by optimizing the following objective functions: 

 

𝜃∗ = argmin
𝜃
(𝐹(𝜃) + 𝜂1‖𝑾1‖2

2 +⋯+ 𝜂𝐿‖𝑾𝐿‖2
2), 

(3) 
𝐹(𝜃) =

1

𝑀
∑ ‖𝑿𝑚

𝐿𝑃𝑆 − �̂�𝑚
𝐿𝑃𝑆‖

2

2𝑀
𝑚=1 , 

 

where M is the total number of training samples (noisy-clean 

pairs). In the online phase, the DDAE transforms the noisy 

speech signal (𝒀𝑚
𝐿𝑃𝑆) into an enhanced speech signal (�̂�𝑚

𝐿𝑃𝑆). 

More detailed introduction of the DDAE NR approach can be 

found in [10]. 

III. EXPERIMENTS AND RESULTS 

A. Experimental Setup 

Experimental results were conducted using the Taiwan Manda-

rin version of the hearing in noise test (TMHINT) [19], which 

were recorded at the sampling rate of 16,000 Hz by a native 

male Taiwan speaker in a soundproof room. In TMHINT, there 

are 320 clean utterances with ten Chinese characters in each 

utterance. Among these clean utterances, we selected 120 and 

200 different utterances to form the training and testing sets, 

respectively. The noise from two equal-level interfering female 

talkers (2T) was artificially added to both the clean training and 

testing sets under −10, −5, −3, 0, 3, 5, and 10 dB SNR noise 

conditions to obtain noisy data. Moreover, the noisy testing ut-

terances derived under the SNR of 0 and 5 dB were further ex-

tracted as the final testing set for the subsequent evaluations. 

Therefore, 840 training noisy-clean speech pairs and 400 test-

ing noisy utterances were generated in this task.  

For the feature extraction in Fig. 1, the frame length of 16 

ms and the hop size of 8 ms were selected to window the input 

waveform in a series of frames. Subsequently, the 129-point 

log spectrogram was performed by applying the 256-point fast 

Fourier transform to these frames in the time domain. In order 

to achieve the same dimensions as the 129-point log spectrum, 

there were 129 nodes in both the input and output layers of the 

DDAE NR model, which contained three hidden layers with 

300 neurons in each layer. The subjects were recruited from 

Cheng Hsin General Hospital, Taipei, Taiwan. The study pro-

cedures were approved by the Institutional Review Board at the 

hospital, and informed consents were obtained from all the sub-

jects before testing. Six native Taiwan Mandarin-speaking CI 

recipients participated in this study. Each recruited subject re-

ceived a personalized CI unit with clinical speech processors 

and used it for more than 7 months. Among these subjects, two 

used the Advanced Bionics (AB) HiRes-120 sound coding 

strategy [20], and the other four used the cochlear advanced 

combination encoder (ACE) sound coding strategy [21]. All 

the subjects were required to participate in eight testing condi-

tions (1 noise type (2T) × 2 SNR levels (0 and 5 dB) × 4 signal 

processing strategies (noisy, logMMSE, KLT, and DDAE)) 

with each condition containing 10 sentences. Notably, none of 

these utterances was repeated across the testing conditions. 

Moreover, the order of the eight conditions was also random-

ized for each subject. The subjects were instructed to repeat 

what they heard, and were allowed to hear the stimuli twice. 

The word correct rate (WCR) listed in eq. (4) was used as the 

evaluation metric, which was calculated by dividing the num-

ber of correctly identified words WC  by the total number of 

words under each testing condition WT.  

WCR = WC WT⁄ ×%. (4) 
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There was a five-minute break for each subject after undergo-

ing testing for 30 min. During the testing time, the built-in NR 

functions of the speech processor in the personalized CI unit of 

each subject were temporarily disabled. In this study, subjec-

tive tests were conducted using a double blind method [22] in 

a soundproof room (provided by Acoustic System, Inc.), where 

a notebook was equipped and connected to a GSI Audiostar Pro 

audiometry device (GSI, MN, USA).  

B.  Comparison of Spectrograms 

In this section, we intend to qualitatively compare the clean, 

noisy, and enhanced speech using the logMMSE, KLT, and 

DDAE NR approaches. The spectrogram plot, which displays 

the spectral-temporal representations of a time-varying signal, 

is used for analysis. In Fig. 2, we illustrate the spectrograms of 

2T noisy (0 dB SNR), clean, and enhanced sentences in (A) to 

(E), where (C), (D), (E) are the sentences enhanced by log-

MMSE, KLT, and DDAE, respectively. The sentence was rec-

orded by a native male Mandarin speaker, saying “There is a 

calligraphy competition in this semester.” From Fig. 2, when 

comparing (B) with (C), (D), and (E), we can observe that all 

the enhanced techniques can effectively suppress the noise 

components whereas DDAE provides the best denoising capa-

bility. The reasons for the good performance are (1) maintain-

ing sturdier high frequency signals (less distortion) and (2)  

 

 
Figure 2. Spectrograms of clean, 2T noisy sentence (0 dB SNR), 

and enhanced sentences; (A) and (B) are clean and noisy 

speech, respectively; (C) to (E) show the sentences enhanced 

by logMMSE, KLT, and DDAE, respectively.  

 

 

more accurately removing the speech signals from the back-

ground (sometimes logMMSE and KLT failed, owing to simi-

lar characteristics of target speech and background speech). 

The results suggest that DDAE has a better capability to handle 

non-stationary noises. 

C. Example of the amplitude envelopes 

Another useful qualitative analysis is based on the amplitude 

envelopes of speech signals [23]. Fig. 3 shows an example of 

the amplitude envelopes of speech signals—(A) clean, (B) 

noisy, and (C), (D), and (E) enhanced processing using the log-

MMSE, KLT, and DDAE approaches, respectively extracted 

from the third channel (with center frequency of 575 Hz), 

which is an important frequency band for speech intelligibility 

[24]. From Fig. 3, it can be observed that DDAE is more effec-

tive at suppressing noise components from noisy data and 

yields fewer envelop distortions [25] than the conventional NR 

approaches. Furthermore, when comparing with Fig. 3(A), 

large residual interferences can be observed in Figs. 3 (C, D) 

(e.g., around 0 to 0.1 s for logMMSE and 2.0 to 2.3 s for KLT). 

On the other hand, DDAE in Fig. 3(E) effectively removes the 

interferences at these segments. The results suggest that the 

DDAE NR approach provides superior speech intelligibility 

benefits for CI recipients. 

 

 

 
Figure 3. Amplitude envelopes extracted from the third channel 

(fcenter = 575 Hz) of clean, 2T noisy sentence (0 dB SNR), and 

enhanced sentences; (A) and (B) are clean and noisy speech, 

respectively; (C) to (E) show the sentences enhanced by log-

MMSE, KLT, and DDAE, respectively. 
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D. Recognition scores by Mandarin CI recipients 

Finally, we report the clinical results of listening tests per-

formed on the six CI subjects. Fig. 4 shows the mean scores of 

noisy speech and the three enhancement approaches (i.e., log-

MMSE, KLT, and DDAE) tested on the six subjects in 2T noise 

at SNR levels of 0 dB and 5 dB. The performance is reported 

in terms of the averaged WCR. From the figure, it is evident 

that the DDAE NR approach achieves higher intelligibility 

scores than the noisy speech and enhanced speech processed 

by the conventional NR approaches. We further adopted the 

one-way analysis of variance (ANOVA) [26] and Tukey post-

hoc comparisons to test the significance of the improvements. 

The ANOVA and Tukey post-hoc comparisons verified the sig-

nificant differences for the following three group pairs at SNRs 

of 0 and 5 dB: DDAE and noisy; DDAE and logMMSE; DDAE 

and KLT.  

 

 
Figure 4. Mean intelligibility scores of two test conditions: 2T 

0 dB SNR level (2T_0dB) and 2T 5dB SNR level (2T_5dB). 

The error bars denote the standard errors of mean values.  

 

IV. CONCLUSIONS 

This study investigated the performance of clinical listening 

tests using the DDAE NR approach for Mandarin CI recipients 

under competing speech noises. Two traditional methods, i.e., 

logMMSE and KLT, were also employed for comparison. The 

results show that the DDAE NR outperforms the conventional 

NR methods in terms of qualitative comparisons and subjective 

listening tests. These findings demonstrate that the DDAE, a 

deep learning NR approach, can be applied to CI users as a 

promising method for improving speech recognition perfor-

mance. 
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