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ABSTRACT 

 
This paper presents a novel postfiltering approach based on 
the locally linear embedding (LLE) algorithm for speech 
enchantment (SE). The aim of the proposed LLE-based post-
filtering approach is to further remove the residual noise 
components from the SE-processed speech signals through a 
spectral conversion process, thereby increasing the signal-to-
noise ratio (SNR) and speech quality. The proposed postfil-
tering approach consists of two phases. In the offline phase, 
paired SE-processed and clean speech exemplars are pre-
pared for dictionary construction. In the online phase, the 
LLE algorithm is adopted to convert the SE-processed 
speech signals to the clean ones. The present study integrates 
the LLE-based postfiltering approach with a deep denoising 
autoencoder (DDAE) SE method, which has been confirmed 
to provide outstanding capability for noise reduction. Exper-
imental results show that the proposed postfiltering approach 
can notably enhance the DDAE-based SE processed speech 
signals in different noise types and SNR levels. 
 

Index Terms— Speech enhancement, deep neural net-
work, locally linear embedding, postfiltering 
 

1. INTRODUCTION 
 
For a wide range of voice-based applications, such as hear-
ing aids, hands-free communication and automatic speech 
recognition, speech enchantment (SE) plays a crucial role 
with the aim of improving the speech quality and intelligibil-
ity of corrupted speech. In the past, numerous SE approach-
es have been proposed. These approaches can be roughly 
divided into unsupervised ones, such as spectral subtraction 
[1], Wiener filter [2], Kalman filtering [3], and minimum 
mean-square-error (MMSE) spectral estimator [4], and su-
pervised ones, such as sparse coding [5], nonnegative matrix 
factorization (NMF) [6], [7], deep neural network (DNN) 
[8], [9], and deep denoising auto-encoder (DDAE) [10], [11], 

[12]. Because a non-linear and complex function is adopted 
to characterize the mapping from noisy to clean speech, 
when a sufficient amount of training data is available, DNN- 
and DDAE-based approaches can yield outstanding perfor-
mance [13]. 

Recently, we have employed the maximum likelihood pa-
rameter generation algorithm (MLPG) [14], [15] in a 
DDAE-based SE system, termed DAS, to overcome the dis-
continuity effect caused by frame-by-frame processing [12]. 
Experimental results confirm that DAS can provide higher 
quality and intelligibility than DDAE alone. In this paper, 
we further adopt a postfiltering stage based on the local line-
ar embedding (LLE) algorithm [16] to improve the DAS 
performance.  

LLE is a manifold learning algorithm, which has been 
successfully applied to speaker voice conversion in our pre-
vious work [17]. In this study, we investigate its ability in 
SE. We first employed LLE to directly convert noisy speech 
to clean speech. Due to its natural limitation, however, LLE 
could not achieve satisfactory performance when working 
alone, especially under low signal-to-noise ratio (SNR) 
noisy conditions. Nevertheless, we noted that LLE-based 
postfiltering could be suitably combined with DAS to further 
remove the residual noise components, and thus improve the 
SNR and speech quality in different noisy conditions.  

The paper is organized as follows. The proposed LLE-
based postfiltering approach for SE is introduced in Section 
II. The experimental evaluations are presented in Section III. 
Finally, Section IV gives the conclusions. 

 
2. LLE-BASED POSFILTERING APPROACH 

Figure 1 shows the system architecture of the proposed LLE-
based postfiltering approach for SE. The main concept is to 
perform voice conversion (from DAS-processed speech to 
clean speech) based on the LLE algorithm. The overall pro-
cess can be divided into offline and online stages, which will 
be detailed in this section.  



 
2.1. The offline stage 
 
From Fig. 1, the paired DAS-processed speech signals and 
clean ones are prepared in the offline stage. After spectral 
feature extraction, a pair of dictionaries (DAS and clean 
dictionaries) is constructed from the joint spectral feature 
vectors. In the meanwhile, clean speech statistics are esti-
mated, which will be used in the MLPG algorithm. 

Let the DAS and clean dictionaries be composed by the 
source and target spectral feature vectors (called exemplars 
hereafter) as 1, , , ,n N=   X X X X   and 1, , , ,n N=   Y Y Y Y  , 

respectively. nX  and nY  are the source and target exemplars 
at frame n, respectively. For both source and target signals, 
the total number of exemplars is N. Note that each exemplar 
(spectral feature vector) in dictionaries X  and Y  is com-
posed by its D-dimensional static, delta, and delta-delta fea-
tures, in order to consider the temporal information. 

 
2.2. The online stage 
 
In the online stage, given an input utterance (DAS-processed 
speech), spectral feature extraction is performed to obtain 
the spectral feature vectors X  (source spectral feature vec-
tors). Then, the major LLE-exemplar-based SE module is 
performed to convert the source spectral features to the con-
verted spectral features, such that the locality structure in the 
source spectral features is preserved in the converted spec-
tral features. In the following subsections, we will describe 
the major LLE-exemplar-based SE part and the MLPG algo-
rithm of the proposed postfiltering approach. 
 

2.2.1. The major LLE-exemplar-based SE 
The major LLE-exemplar-based SE consists of three steps. 
The first step identifies the locally linear patch by finding a 
set of K nearest neighbors (measured by the Euclidean dis-
tance) from the DAS dictionary for each data point (source 
spectral feature vector). The second step characterizes the 
local geometry of each locally linear patch by computing the 
reconstruction weights that minimize the local reconstruction 
error as 
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where tX  (a 3D-by-1 vector) denotes the source spectral 
feature vector (composed by its static, delta and delta-delta 
features) at frame t; T is the total number of frames (source 
spectral feature vectors) of an input utterance for conversion; 

[ ]1, , ,t t tk tK=A a a a   (a 3D-by-K matrix referred to as the 
sub-DAS dictionary) is the subset of the DAS dictionary X  
for tX ; tka (a 3D-by-1 vector) is the k-th exemplar (i.e., the 
k-th nearest neighbor of tX ) in the sub-DAS dictionary; and 

tw  (a K-by-1 vector) is the reconstruction weight vector at 
frame t, subject to 1t

Τ =1 w , where 1 is a K-by-1 vector 
whose elements are all ones, for the purpose of translational 
invariance. Estimating the reconstruction weights by mini-
mizing ε  subject to the constraint is a constrained least 
squares problem and can be solved separately for each frame. 
The solution can be obtained by solving the linear system of 
equations t t =G w 1 , and then rescale the weights to satisfy 
the constraint 1t

Τ =1 w , where tG  is the local Gram matrix 
(K-by-K) for tX : 

( ) ( )t t t t t

ΤΤ Τ= − −G A X 1 A X 1 .                   (2) 
Finally, in the third step, with the assumption that the spec-
tral feature vectors of the SE-processed speech and those of 
the clean speech form manifolds with similar local geome-
tries in two distinct spectral feature spaces, the converted 
spectral feature vectors Ŷ  is obtained by using the recon-
struction weights and the corresponding K target exemplars 
as  
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where [ ]1, , , ,t t tk tK=B b b b  (a 3D-by-K matrix referred to 
as the sub-clean dictionary) is the subset of the clean dic-
tionary Y  corresponding to the sub-DAS dictionary tA , in 
which each tkb (a 3D-by-1 vector) is the k-th exemplar (cor-
responding to tka ) in the sub-clean dictionary. 
 
2.2.2. The MLPG algorithm 
It has been noted that LLE-exemplar-based voice conversion 
still suffers from the discontinuity [17]. To overcome this 
problem, the MLPG algorithm for the proposed method is 
given as 

 
Fig. 1. The proposed LLE-based postfiltering approach. 
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where ŷ  (a DT-by-1 vector) is the converted static spectral 
feature sequence; M  is a 3DT-by-DT weighting matrix used 
for appending the dynamic features to the static ones; 

1
ˆ ˆ ˆ ˆ[ , , , , ]t T

Τ Τ Τ Τ=Y Y Y Y   (a 3DT-by-1 vector) is the con-
verted spectral feature sequence obtained by (3); 

1daig[ , , , , ]t T= (Y) (Y) (Y)U Λ Λ Λ   (a 3DT-by-3DT matrix) is 
the global precision matrix, where 1 t T= = = =(Y) (Y) (Y)Λ Λ Λ   
(a 3D-by-3D matrix) is the precision/variance estimated 
from the clean speech data, which is assumed to be diagonal. 
 

3. EXPERIMENTS 
 

3.1. Experimental setting 
 
Our experiments were conducted on a Mandarin hearing in 
noise test (MHINT) database, which contained 300 utteranc-
es pronounced by a male native Mandarin speaker recorded 
in a clean condition room with a 16 kHz sampling rate. We 
compared the baseline DAS system [12] (denoted as DAS) 
with the DAS system with the proposed LLE-based postfil-
tering approach (denoted as DAS w/ LLE). 
 
3.1.1. The baseline DAS system 
The first 250 utterances of the MHINT dataset were used for 
training the DAS system. The training utterances were artifi-
cially added by car and two-talker noises recorded in a real 
environment. The SNRs ranged from -10 to 20 dB with a 5 
dB interval. As a result, for each noise type, 1750 noisy ut-
terances paired with the corresponding clean utterances were 
generated as the training set. The neural networks of the 
DAS system consisted of seven hidden layers with 1200, 
300, 300, 514, 300, 300, and 1200 hidden nodes. Two DAS 
systems, one for the car noise and the other for the two-
talker noise, were obtained by the training data. 

For signal analysis, the frame length and the frame shift 
for segmenting a speech waveform with a hamming window 
were 32 and 16 milliseconds, respectively. Each frame of 
speech was converted to a static feature vector with 257-
dimensional log-power spectral features. The contextual 
feature vectors were then appended to the static one to form 
the final spectral feature vector, whose dimension was 771. 
 
3.1.2. The proposed LLE-based postfiltering approach 
Five-fold cross validation was performed to evaluate the 
proposed LLE-based postfiltering approach. In each run, 
among 50 utterances in the test set, we constructed the DAS 
and clean dictionaries using 40 utterances while the remain-
ing 10 utterances were used for test. The SNRs for building 
the dictionaries were -10, 0, and 10 dB. Therefore, for each 
noise type, 120 clean and the corresponding DAS-processed 
utterances were used for building the dictionaries. The signal 
analysis part is the same as that used in developing the DAS 

system, except that the log-power spectral features among all 
frames were normalized to the same energy. Moreover, the 
number of nearest neighbors, namely K in (1), for the LLE 
algorithm was set to 1024 empirically. 
 
3.2. Objective evaluation 
 
We compared DAS and DAS w/ LLE in terms of three ob-
jective evaluation metrics, namely, the perceptual evaluation 
of speech quality (PESQ) [18], the short-time objective in-
telligibility measure (STOI) [19], and the segmental signal-
to-noise ratio (SSNR, in dB) [20]. The score ranges of 
PESQ and STOI are {-0.5 to 4.5} and {0 to 1}, respectively. 
Higher scores of PESQ and STOI denote better speech qual-
ity and better intelligibility, respectively. On the other hand, 
SSNR denotes the degree of noise reduction. 

Tables 1 and 2 show the objective evaluation scores ob-
tained by DAS and DAS w/ LLE in the two-talker and car 
noises at different SNRs, respectively. From Table 1, we 
first observe that DAS w/ LLE achieves better SSNR scores 
than DAS at all SNRs. Similar trends can also be found in 
the car noise condition as shown in Table 2. The result re-
veals that the residual noises in the DAS-processed speech 
can be further removed by the LLE-based postfiltering ap-
proach, thereby increasing the SSNR scores. We also ob-
serve that DAS w/ LLE obtains slightly higher PESQ scores 
than DAS in higher SNR conditions in both Table 1 and 
Table 2. The result suggests that the proposed postfiltering 
approach can slightly improve the sound quality. Finally, it 
is found that DAS w/ LLE is inferior to DAS under all SNRs 
and noise types in terms of STOI. The result suggests that 
the proposed postfiltering approach tends to degrade the 

Table 1. PESQ, STOI, and SSNR of DAS w/ LLE and 
baseline DAS on the test set at different SNRs of the 
two-talker noise. 

 DAS w/ LLE DAS 
PESQ STOI SSNR PESQ STOI SSNR 

SNR10 2.22 0.83 12.73 2.21 0.88 12.48 
SNR6 2.11 0.82 12.08 2.05 0.86 11.76 
SNR2 1.97 0.80 10.88 1.93 0.84 10.47 
SNR0 1.86 0.79 10.12 1.83 0.83 9.66 
SNR-2 1.78 0.78 9.03 1.75 0.81 8.46 
SNR-6 1.59 0.75 6.13 1.61 0.78 5.38 

SNR-10 1.42 0.69 2.53 1.47 0.72 1.51 
Ave 1.85 0.78 9.07 1.83 0.82 8.53 

 
Table 2. PESQ, STOI, and SSNR of DAS w/ LLE and 
baseline DAS on the test set at different SNRs of the car 
noise. 

 DAS w/ LLE DAS 
PESQ STOI SSNR PESQ STOI SSNR 

SNR10 2.03 0.80 15.73 1.96 0.85 15.04 
SNR6 1.99 0.79 14.91 1.93 0.84 14.17 
SNR2 1.92 0.78 13.37 1.89 0.83 12.40 
SNR0 1.86 0.78 12.34 1.85 0.82 11.40 
SNR-2 1.82 0.77 11.05 1.81 0.81 10.00 
SNR-6 1.71 0.75 7.74 1.75 0.79 6.34 

SNR-10 1.60 0.72 3.90 1.67 0.76 2.22 
Ave 1.85 0.77 11.29 1.84 0.81 10.23 

 



speech intelligibility slightly. Fig. 2 shows the spectrograms 
of clean speech, noisy speech, speech enhanced by DAS, 
and speech enhanced by DAS w/ LLE, respectively. From 
the figure, we observe that both DAS and DAS w/ LLE can 
remove noise components. We also observe that DAS w/ 
LLE reveals more detailed sound structures and removes 
more noise components than DAS. 
 
3.3. Subjective evaluation 
 
We performed subjective tests in terms of noise reduction 
capability and preference, respectively. In the noise reduc-
tion capability test, the subjects were asked to select one 
from two utterances that had a better noise reduction capa-
bility. In the preference test, the subjects were asked to se-
lect one from two utterances according to the overall prefer-
ence. That is, the subjects were hinted to select one from two 
utterances considering the speech quality, speech intelligibil-
ity, and noise reduction capability jointly.  

The test utterances were generated under two noise types 
(i.e., two-talker and car noises) at three different SNRs (i.e., 
-6, 0, and 6 dB). Note that -6dB and 6dB were not seen in 
both DAS training and LLE dictionary construction. Fifteen 
pairs of utterances were tested for each noise type and SNR. 
We conducted AB tests, i.e., each pair of SE-processed 
speech utterances by methods A and B were presented in a 
random order to the subjects. Twelve subjects were involved 
in the tests. Figs. 3 and 4 show the results of the noise reduc-
tion capability test and the preference test, respectively.   

From Fig. 3, we observe that DAS w/ LLE outperforms 
baseline DAS in all experimental conditions. The result con-
firms that the residual noises in the DAS-processed speech 
signals can be further remove by the LLE-based postfiltering 
approach through a spectral conversion process. The result 
is consistent with that of the SSNR-based objective evalua-
tion shown in Tables 1 and 2. From Fig. 4, we also observe 
that DAS w/ LLE achieves a significant gain over DAS in all 
experimental conditions. The result again demonstrates the 
effectiveness of the proposed LLE-based postfiltering ap-
proach for SE. It is worth mentioning that the main factor 

considered in the preference test is the noise reduction capa-
bility according to the subjects’ responses. A possible reason 
is that the speech quality and speech intelligibility of both 
approaches are similar to each other (cf. the scores of PESQ 
and STOI in Tables 1 and 2); therefore, noise reduction ca-
pability becomes an important factor while comparing the 
proposed and baseline approaches.  
 

4. CONCULSIONS 
 

In this paper, we have proposed a novel LLE-based postfil-
tering approach for SE. Our main contribution is that we 
investigate the use of the LLE algorithm with the paired SE-
processed and clean dictionaries for postfiltering for the SE 
task. The subjective evaluation results revealed that the DAS 
system with the proposed LLE-based postfiltering approach 
(DAS w/ LLE) achieves a significant gain over the baseline 
DAS system. DAS w/ LLE also shows its potential in the 
objective evaluation. For future work, we will evaluate our 
LLE-based postfiltering approach on more SE approaches 
and noise types. Extending the current approach to a speaker 
independent one is attractive but challenging. 
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Fig. 3. Noise reduction capability test results for two 
noise types (2Talk: two-talker noise, Car: car noise) 
at three different SNRs (-6, 0, 6 dB), respectively. 
Error bars indicate the 95% confidence intervals. 

 
Fig. 4. Preference test results for two noise types 
(2Talk: two-talker noise, Car: car noise) at three 
different SNRs (-6, 0, 6 dB), respectively. Error bars 
indicate the 95% confidence intervals. 

 

 
Fig. 2. Spectrograms of an utterance example, original 
(upper left), noisy speech (upper right), DAS enhanced 
(bottom left), and DAS w/ LLE (bottom right) with two-
talker noise at SNR = 6 dB. 
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