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Abstract
The i-vector representation and modeling technique has been
successfully applied in spoken language identification (SLI). In
modeling, a discriminative transform or classifier must be ap-
plied to emphasize variations correlated to language identity s-
ince the i-vector representation encodes most of the acoustic
variations (e.g., speaker variation, transmission channel varia-
tion, etc.). Due to the strong nonlinear discriminative power of
neural network (NN) modeling (including its deep form DNN),
the NN has been directly used to learn the mapping function
between the i-vector representation and language identity label-
s. In most studies, only the point-wise feature-label informa-
tion is feeded to NN for parameter learning which may result in
model overfitting, particularly when with limited training data.
In this study, we propose to integrate pair-wise distance metric
learning in NN parameter optimization. In the representation
space of nonlinear transforms of hidden layers, a distance met-
ric learning is explicitly designed for minimizing the pair-wise
intra-class variation and maximizing the inter-class variation.
With the distance metric as a constraint in the point-wise learn-
ing, the i-vectors are transformed to a new feature space which
are much more discriminative for samples belonging to differ-
ent languages while are much more similar for samples belong-
ing to the same language. We tested the algorithm on a SLI task,
encouraging results were obtained with more than 20% relative
improvement on identification error rate.

Index Terms: Deep neural network, cross-entropy, pair-wise
distance metric learning, spoken language identification.

1. Introduction
The i-vector representation and modeling technique has been
successfully applied in speaker recognition and spoken lan-
guage recognition [1]. One of the advantages of using the i-
vector representation is that speech utterances with various du-
rations can be represented as fixed-length feature vectors. It can
be regarded as a middle level representation between Gaussian
mixture model (GMM) based super-vector and MFCC feature
representation. The i-vector representation encodes most of the
acoustic variations which is convenient for classification mod-
eling. Since the acoustic variations include many factors, e.g.,
speaker and transmission channel variations, a discriminative
transform must be applied to remove uncorrelated variations
while emphasizing discriminative variations for different task
[2][3]. For speaker recognition task, the discriminative trans-
form must emphasize the feature variations correlated to speak-
er identity. For spoken language identification (SLI) task, the
discriminative transform must emphasize the feature variations
correlated to language identity. In this study, the later task is

focused on.

Conventionally, a linear discriminant analysis (LDA) based
transform is applied on the i-vectors to obtain discriminative
features. The transformed feature can be modeled with many
types of classifiers for SLI, e.g., Gaussian mixture model (G-
MM), support vector machine (SVM), probabilistic linear dis-
criminant analysis (PLDA) [4][5]. Algorithm of artificial neural
network (NN) (including its deep form, i.e., deep neural net-
work (DNN)), has showed its dominant power for feature learn-
ing and classification in image processing and speech recogni-
tion [6][7][8]. It has also been used in speaker recognition and
spoken language recognition [9][10][11]. The DNN modeling
can automatically explore the nonlinear feature variations re-
lated to the classification task. In most studies for using DNN
for SLI, two modeling methods are adopted [10]. One is us-
ing DNN as a discriminative classifier to directly map the i-
vector representation (or other acoustic feature representations)
to their language IDs, i.e., “direct method”. The other is us-
ing DNN as a front-end processing for feature learning (e.g.,
bottleneck feature and i-vector extraction), then modeling the
extracted feature with another classifier, i.e., “indirect method”.
In this study, we focus on the “direct method” of using DNN.

In conventional algorithms, the DNN model parameters
are optimized with point-wise training based on the principle
of minimizing an objective function measuring the difference
between predicted language labels and true target labels (e.g.,
cross-entropy) [11]. This idea is directly inspired by the DNN
acoustic modeling in automatic speech recognition (ASR). In
DNN acoustic modeling, a large quantity of labeled training da-
ta must be provided, for example, hundreds of hours of acoustic
data is labeled in training, i.e., a large quantity of samples for
each class label is provided. In SLI for a small data task, only a
limited number of samples (e.g., number of hundreds) for each
language is provided in training. In this case, the model is eas-
ily over-fitted since it is optimized on the training data set. The
over-fitted DNN model will lose its strong capacity in classifi-
cation task which results in bad performance for a testing data
set (i.e., weak generalization). In this study, rather than only
using point-wise feature-label information in DNN parameter
training, we investigate the possibility of feeding much more
information of training data set to improve the DNN model gen-
eralization ability.

In a training data set, besides point-wise feature-label in-
formation which is widely used in supervised learning, other
information may provide auxiliary information for robust mod-
eling, for example, training data geometric structure, pattern
clustering property etc. In this study, besides using feature-
label information for supervised training of DNN, the similari-
ty or distance measure of pair-wise samples is taken into con-
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Figure 1: Distance metric learning with local-push transform to
reduce intra-class variation, and local-pull transform to increase
inter-class variation.

sideration. Learning with consideration of pair-wise distance
or similarity structure belongs to a large category of machine
learning, i.e., metric learning [12][13][14]. For example, in lin-
ear metric learning (either distance metric or similarity metric)
[12], the Mahalanobis distance metric is learned on the input
feature space in order to measure the similarity of a pair of
input samples. With the DNN framework, nonlinear distance
metric learning has been proposed in face recognition and re-
identification [15][16]. In most metric learning studies, the dis-
criminative transform is explicitly optimized based on an objec-
tive function which is supposed to reduce intra-class variation
while increasing iter-class variation. Fig. 1 gives an illustration
of this process. As shown in this figure, a distance (or similari-
ty) metric transform f(x) should be learned to “push” samples
belonging to the same class to neighboring space while “pull”
samples belong to different class to some distance. In most stud-
ies, the distance metric is learned with a conventional classifier
for classification task, e.g., K-nearest neighbor classifier, sup-
port vector machine, etc. In this study, we integrate this metric
learning with conventional DNN learning framework for SLI.

The reminder of the is paper is organized as follows. Sec-
tion 2 introduces the DNN model framework which explicitly
integrates pair-wise distance metric learning in model parame-
ter optimization. SLI experiments were carried out in Section
3. Discussion and conclusion were given in Section 4.

2. DNN with pair-wise distance metric
learning

In DNN modeling for classification, a softmax layer is often s-
tacked as a classifier layer with normalized probability output.
The hidden layers with nonlinear transforms provide discrimi-
native features as input to the classifier. In this sense, the func-
tion of a series of nonlinear transforms in those hidden layers
can be regarded as a feature metric learning process, i.e., learn-
ing a distance metric (or similarity metric) which is suitable for
classification. Fig. 2 shows the two stages of DNN framework
as distance metric and classification learning. In Fig. 2 (b),
as most widely used in DNN learning, the feature-label map is
directly learned by minimizing a cross entropy based objective
function. In parameter optimization, there is no explicit con-
straint on how the hidden layer features are learned. In metric
learning (as in Fig.2 (a), the transform functions via hidden lay-
ers are constrained with a pair-wise loss function. As shown
in the figure, two representations from the last hidden layers
are obtained from a pair of input vectors. The two input vec-

tors share the same DNN model parameters which is similar as
used in Siamese network [17]. In the followings, the point-wise
feature-label learning and pair-wise distance metric learning are
introduced.

2.1. Learning point-wise feature-label mapping

For classification, the DNN framework can be directly used for
learning feature-label mapping as conventionally used. For a
DNN with K − 1 hidden layers, the output of a hidden layer is
represented as

hk = fk
(
Wkhk−1 + bk

)
, (1)

where k = 1, ...,K − 1, h0 = x is the input layer with fea-
ture vector x (i-vector as used in this paper). Wk and bk is
the neural weight matrix and bias of the k-th hidden layer, re-
spectively. fk (.) is a nonlinear active function (element-wise
transform), e.g., sigmoid function, tanh function, Rectified Lin-
ear Units (ReLU) [18], etc. In this study, a tanh function was
used as

fk (z) = tanh (z) =
exp (z)− exp (−z)
exp (z) + exp (−z) (2)

For an input feature vector x, a predicted label is obtained
from the final output layer which is defined as a softmax layer
as

ŷj = p (yj = 1|x,W,b)

=
exp(WK

j hK−1
j +bK−1

j )
#Class∑

i=1
exp(WK

i hK−1
i +bK−1

i )
(3)

where yj is the output of the j-th neuron in the softmax layer,
“#Class” is the total number of classes. For learning the mod-
el parameters, an objective function defined as cross entropy
(CE) between the predicted and true target labels is used as

l (Θ) =

#Sample∑
i=1

CE (yi, ŷi) = −
#Samples∑

i=1

#Class∑
j=1

yi,j log ŷi,j

(4)
where ŷi,j and yi,j are the elements of predicted target and true
target vector of ŷi and yi, respectively. i and j are the index
of sample and class number, respectively. “#Samples” is the
total number of training samples.

The learning of the DNN parameters is based on minimiz-
ing an objective function defined on the cross entropy of a train-
ing data set as

Θ∗ = argmin
Θ

C (Θ)

C (Θ) = l (Θ) + λR (Θ)
(5)

where Θ =
{
Wk,bk, k = 1, 2, ...,K

}
is the DNN parameter

set. λ is a regularization coefficient to control the tradeoff be-
tween the cross entropy based loss and parameter regularization
R (Θ). In most studies, parameter regularization is defined as
smoothness or sparseness of the model parameter space (e.g.,
either L1 or L2 regularization) which is proved to improve the
generalization ability of the DNN modelling.

In learning, the stochastic gradient descent (SGD) algorith-
m is used. From the transforms and objective function Eqs. (1)-
(5), we can see that the learning tries to find a local optimal so-
lution to approximate the feature-label mapping on the training
data set. In order to find a better solution, constraints must be
given on the learned transform functions. In this study, a pair-
wise distance metric on the representation space obtained from
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Figure 2: Deep neural network learning (a) pair-wise distance metric learning in hidden layers, (b) point-wise classifier learning by
softmax layer.

the last hidden layer output is added as a constraint in DNN
parameter learning.

2.2. Pair-wise nonlinear distance metric learning

The basic principle for metric learning is to find a transform
function by which the distance of two samples from the same
class to be close while far for samples from different class-
es, i.e., reducing intra-class variation and increasing inter-class
variation [12]. In our DNN framework, we explicitly add this
property to control the nonlinear transform function realized by
hidden layer transforms.

For a pair of samples xi and xj , in a transformed space
from a hidden layer output, their distance can be defined as Eu-
clidean distance or cosine distance. As in most studies for i-
vector based spoken language recognition, the cosine distance
metric is widely used. In this study, the cosine distance met-
ric is also used. In a transformed space with fk (·), the cosine
distance metric is defined as

dfk (xi,xj) =
fk (xi)

T fk (xj)

‖fk (xi)‖12 ∗ ‖fk (xj)‖12
(6)

This metric measures the angles of two vectors which is a simi-
larity measure as widely used in vector space modeling (VSM)
[19]. It has maximum 1 (angle 0) and minimum values −1
(angle π). Therefore, the values of pair-wise distance are dis-
tributed between [−1, 1].

For convenience of analysis, for a training data set with fea-
ture vector xi and label vector yi (one-hot encoding vector),
i = 1, 2, ..., we define two data sets S and D of pair-wise sam-
ples as follows:

S = {(xi,xj) |∀yi = yj}
D = {(xi,xj) |∀yi �= yj} (7)

i.e., data sets S and D consist of pair-wise data samples with
labels belonging to the same and different classes, respectively.

Based on the basic principle of metric learning, two loss
functions are defined on the pair-wise data sets as:

JIntra (Θ) = 1
#S

∑
(xi,xj)∈S

(dfk (xi,xj)− 1)2

JInter (Θ) = 1
#D

∑
(xi,xj)∈D

(dfk (xi,xj) + 1)2
(8)

“#S” and “#D” are the number of sample pairs in sets S
and D, respectively. In these equations, minimizing JIntra (Θ)
could decrease the pair-wise intra-class variation, and minimiz-
ing JInter (Θ) could increase the pair-wise inter-class variation.

Considering the tradeoff between the robustness and dis-
crimination, the objective function for pair-wise metric learning
is formulated as follows:

J (Θ) = JIntra (Θ) + αJInter (Θ) (9)

where α controls the tradeoff between these two loss functions.
For equal weighting of each pair-wise loss, the metric learning
is based on minimizing the following objective function as

J (Θ) =
1

# {S ∪D}
∑

(xi,xj)∈{S∪D}
(dfk (xi,xj)− ti,j)

2,

(10)
where “# {S ∪D}” is number of sample pairs in sets S and D,
and the pair-wise label ti,j is defined as:

ti,j =

{
1,∀ (xi,xj) ∈ S
−1,∀ (xi,xj) ∈ D

(11)

2.3. Minimizing cross entropy with pair-wise distance met-
ric learning

In our proposed DNN modeling, pair-wise distance metric
learning was integrated with the point-wise cross-entropy learn-
ing. The pair-wise distance metric can be learned from each
hidden layer of DNN. In our study, we only consider the dis-
tance metric learning from the last hidden layer. The objective
function in DNN parameter learning is formulated as

Θ∗ = argmin
Θ

M (Θ)

with M (Θ) = l (Θ) + γJ (Θ) + λR (Θ)
(12)

In this objective function, the first term l (Θ) is the point-wise
cross entropy between predicted and true labels, the second term
J (θ) is the objective function for distance metric learning.

In learning the model parameters, we suppose the parame-
ter set related to distance metric learning and classifier (softmax
layer) as Θ = {ΘF ,ΘC}, then the gradients of them are calcu-
lated as follows:

∇ΘF = ∂M
∂ΘF

= ∂l
∂ΘF

+ γ ∂J
∂ΘF

+ λ ∂R
∂ΘF

∇ΘC = ∂M
∂ΘC

= ∂l
∂ΘC

+ λ ∂R
∂ΘC

(13)
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In this formulation, ΘF represents the DNN parameter set (neu-
ral connection weights and bias) except the softmax layer, and
ΘC is the DNN parameter set only associated to softmax lay-
er. From these equations, we can see that in feature metric pa-
rameter ΘF learning, besides the gradient estimated from loss
function of cross-entropy, the gradient is explicitly regularized
with the pair-wise loss function J (Θ), while the classifier lay-
er parameter ΘC learning, the gradient is calculated from the
derivative of the cross entropy of all training samples.

3. Experiments
In this study, rather than exploring all possible ways (“direct”
and “indirect” methods as introduced in section one) to obtain
the best results for SLI, we examine whether integrating pair-
wise metric learning in a unified DNN model could improve the
performance or not. In this section, we test the algorithm on
spoken language identification task.

For simply integrating utterance based acoustic variations
in modeling, i-vector feature is used as input of the DNN mod-
eling. A data set from NIST i-vector challenge for SLI is used
in this paper [20]. 50 types of languages are included in the
data set, and each utterance in the data set is represented as
a 400-dimension i-vector. The data set was reorganized into
three subsets for training, validation and test. 10k samples (200
samples for each language) and all their pair-wise combinations
(10k*(10k-1)/2) are used in training. 2.5k samples were used
in validation, and another 2.5k samples are used in testing (50
samples for each language).

In building the baseline DNN models, two types of archi-
tectures were used as 400 − L ∗ 512 − 50, L = 1, 2, i.e., 400
dimension of input i-vector, L hidden layers with 512 neurons
for each layer, and 50 neurons in output layer corresponding to
50 language IDs. The network was first layer-wised pre-trained
as restricted Boltzmann machine (RBM) with contrastive diver-
gence algorithm [21]. In fine tuning using stochastic gradien-
t descendent algorithm, mini-batch size was 128, and learn-
ing rate was 0.0002. In the implementation, neural connec-
tion weights were penalized with L2 regularization (with co-
efficient 0.001). The result for test set was obtained when the
performance on validation data set reached the best in a total
of 500 epoches. The results are shown in Table 1. In this ta-

Table 1: Performance of point-wise training for DNN baseline
systems and LDA+SVM system (identification error rate in %)

Model Train Validation Test

M1*512 0.53 18.59 18.34
M2*512 0.10 18.87 18.32

LDA+SVM [2] - - 16.28

ble, “M1*512” and “M2*512” denote the NN model with one
and two hidden layers, respectively. “LDA+SVM” represents
the conventional linear modeling technique, i.e., LDA for fea-
ture transform and SVM for classification. From this table, we
can see that on this small task, the performance of linear model
is much better than the plain neural network model. For neu-
ral network model, with adding more hidden layers, there is no
significant increase in performance on testing data set although
the training error continuously decreased. But in using the back
propagation for finding a local solution, if the network is reg-
ularized with a proper constraint, it is possible to use a deep
network for finding a solution with good performance for both
training and testing data sets. In the following, we implemented
the proposed pair-wise metric learning on the two models. In

the implementation, Eqs. (10) and (11) were used. As shown in
Eq. 12, with different regularization parameter γ, the tradeoff
between feature metric learning and classifier learning is con-
trolled. We first show the performance when varying the regu-
larization parameter in metric learning, the results are shown in
Table 2 (for M2*512). From the results, we can see that with

Table 2: Performance of DNN system with pair-wise metric
learning with varying of regularization coefficient (identifica-
tion error rate in %)

Coef γ Train Validation Test

0 0.10 18.87 18.32
0.001 0.85 17.43 16.32
0.005 1.13 16.92 15.75
0.01 2.89 15.50 14.42
0.03 2.60 15.42 15.12
0.05 3.55 16.38 16.00

increasing of the regularization of pair-wise loss, the error for
training data set was increased, but the performance for valida-
tion and test data sets were improved significantly. When γ is
around 0.01, we obtained the best performance on the testing
data set. These results suggest that with the pair-wise metric
learning as constraint, the performance on testing data set was
improved.

By adjusting the regularization parameter γ for the two NN
model architectures, we obtained the best performance of each
model, and show the results in Table 3. In this table, the column

Table 3: Performance of DNN systems with pair-wise metric
learning (identification error rate in %)

Model Train Validation Test Rel.

M1*512 4.18 16.00 14.67 20.01
M2*512 2.89 15.50 14.42 22.64

with “Rel.” shows the relative improvement compared with their
baseline models (in table 1), respectively. From these results,
we can find that all the models benefit from the pair-wise loss
constraint with significant improvements.

4. Discussion and conclusion
The pair-wise metric learning gives constraint on the DNN rep-
resentation space with a certain structure as similarly used in
Siamese neural network (SNN). In conventional DNN parame-
ter learning, all the parameters are learned based on an objective
function measuring the loss between the predicted and true tar-
get labels. Our parameter learning algorithm explicitly takes
pair-wise distance metric learning as a constraint which results
in a model with better generalization. We have tested the pair-
wise loss as regularization on cross-entropy training of DNN for
a SLI task, and showed encouraging improvement.

In this study, only the results of the regularization frame-
work with metric learning on the last hidden layer was showed.
Further improvement was obtained with adding distance metric
learning on all hidden layers. In addition, we have also tested
with the metric learning as a pretraining step for DNN without
a softmax layer using pair-wise data, then fine tuned the DNN
with stacking a softmax layer with point-wise training. On the
SLI task as used in this study, there was improvement (but not
large) compared with the regularization framework as in section
2.3. In the future, we will further investigate different integra-
tion strategy in our task.
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