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Abstract—The performance of Wi-Fi positioning systems de- secure location systems that can identify malicious networ
grades severely when the user orientation differs betweewt¢ating  attacks and reject them from the positioning system [27[}[3
and training phases. This paper proposes a novel approach geyerg| studies have investigated noise and multipatbrélist

based on histogram equalization to compensate for an orieation . .
mismatch in robust Wi-Fi localization. The proposed method [32]-[38]. Robust pattern matching, outliers removemeand

involves converting the temporal-spatial radio signal stength into ~ data-overfitting problems have also been discussed in the
a reference function (i.e., equalizing the histogram). By sing literature [39]-[44].
equalized signals, the proposed algorithm improves the rakst- Radio irregularity is a common occurrence in wireless envi-
ness of location estimation even in the presence of mismatch ,nments [40], [45], [46]. The performance of fingerprigtin
orientation. The advantages of the proposed algorithm over based Iocaliza’tions' stems degrades severely when radio en
traditional methods are that the assumption of user behaviois Y - Y : y '
not required and a digital compass does not need to be embeddle fonments between training and testing RSSs differ from each
on a mobile device. Experiments conducted in Wi-Fi networks other [47]. One type of radio mismatch is caused by the
demonstrated the effectiveness of the proposed algorithmThe  different user orientations. Users tend to carry mobileickes
results show that the proposed algorithm outperforms the oF in front of them so that they can view the displays and use
entation classifier method and provides comparable posititing the t h H the h bod ists of
accuracy to the compass-assisted approach. e touch screen. However, the human body consists of more
than 50% water and, hence, might block the transmission
of 2.4 GHz Wi-Fi radios [48]. Researchers have performed
experiments regarding the impact of user/device orierati
on RSS. Previous studies have acknowledged this orientatio
. INTRODUCTION problem and have indicated that RSS varies substantially
OCATION awareness has become a crucial concern epending on the user’s orientation, even at a fixed location
|§er], [49]. However, in a fingerprinting-based system, the

various mobile applications [1]-[7]. Recently, numerou - . . 4
. . - . .__mismatch between training and locating orientations makes
studies have addressed location estimation by using megisti, ... : .
S it difficult to accurately determine the location based orSRS
Wi-Fi infrastructure to compensate for the weakness of the . ) .. .
tterns. This severe problem is referred to as “orientatio

Global Positioning System (GPS) in urban areas and indddt N
: mismatch.

environments [8]-[11]. Because of the frequent deployneént To overcome this problem, [50] proposed a compass-

access points (APs), Wi-Fi-based localization has gaimmed ¢ P ' prop b

siderable attention over the last several years, and thedvezt aSS|s_ted approach in W.h'Ch the testing .RSS is matched ac-
.cording to the orientation-matched radio map only, rather

Hn the entire database. A similar approach was presented

. o : . in [51] and [52], in which fingerprinting is extended with
systems, the fingerprinting-based approach, in which thesus grientation information. These approaches effectiveijuoe

location is estimated by matching online RSSs with the \alu%e orientation mismatch effect; however, they requirerpri

pre-stored in a radio map, is one of the most feasible S'(mmlporientation data to enrich the radio map and real-time faekib

[15]-{18]. Because this approach provides a high IOOSmgr"from a digital compass. Although current high level smart-

accuracy in a GPS-less environment, researchers havelyece . . ; .
. : o o . phones can be equipped with compass sensing functions that
proposed various fingerprinting-based localization athors ) . . . . )
provide real-time user orientation, reconstructing agadap

[191-{21]. for every possible orientation is extremely time consunang
Although Wi-Fi-based localization shows great promise, .a

key challenge in real-time location estimation is managirey infeasible.

robustness from various perspectives [22], [23]. For eXxamp Th'.s St.u dy proposes a novel approach b_ased_on h!stogram
S ec&uallzatmn (HEQ) to compensate for an orientation mismat
researchers have addressed heterogeneity in the hardware N, o o .
of Wi-Fi devices [24]-[26]. Previous studies have designela robu.s.t WI-Fi I_ocallzat.|on. Thg t.)aS'C idea is to CanEH th
' probability density function of original RSS vectors intoed-

Shih-Hau Fang and Chu-Hsuan Wang are with the Departmentieaf E erem?e probability density funCtion- Specifically, the pweed
trical Engineering and Innovation Center for Big Data angjifai Conver- algorithm transforms the histogram of each component of the

gence, Yuan Ze University, Taoyuan, Taiwan. Yu Tsao is wlih Research temporal-spatial Wi-Fi radio into that of a reference (i.ie.
Center for Information Technology Innovation, Academiani&, Taipei,

Taiwan. (Email: shfang@saturn.yzu.edu.tw, s1008503@ymaiedu.tw, and equalizes the h.iStOgram)- By using- the equalized RSSs, the
yu.tsao@citi.sinica.edu.tw) proposed algorithm is capable of improving the robustness

Index Terms—Histogram equalization (HEQ), mobile position-
ing, received signal strength (RSS), user orientation, WFi

characteristic [12]-[14]. Among the various Wi-Fi positing



of location estimation, even in the presence of mismatéh(y;) = F (v:), $; denotes the orientation-matched signal,

orientation. Compared with traditional methods, the psgab F(-) denotes a transformation function, afd) is a Kronecker

algorithm is easy to implement in practical applicationeeT delta function. The new estimation in Eq. (2) can be re-emitt

proposed algorithm does not involve assumptions regardiag

user behavior, and the only assumption is that the effect of

orientation mismatch causes a certain transformation ef th 5 aro max H P@Gi(yi)A,)

RSS representation space. J hr T i)l 3)
The proposed algorithm was applied in an indoor Wi-Fi _ S

environment, and RSSs were collected from various user Ori__Comparmg Eq. (3) W'th_ Eq. (1), we can _qbserye the

entations. On-site experiments demonstrated the efteutiss difference between the likelihood formulations, i.£7 # j*.

of the proposed algorithm in compensating for the orientd® 90@ of*the robust location estimation is to make

tion mismatch. Results showed that the proposed appm&ﬂp’roa.cheg - That is, 5 (y;) = F(y;) — si. However,

outperforms the orientation classifier in reducing the meggs!gmng the transformat|0n_funct|0_n .that achlevgs theveb

positioning errors between 16% and 42% in various mismaﬂ%dlfflcult W't_hOUt a set of pa_|red tra|n|ng_ and testing d_ata_

conditions. The results also demonstrated that the proposeNOW consider a rather naive assumption that the distribu-

algorithm provides a comparable positioning accuracy & tpfions of tralnlng data and observation data are bot_h Gaussia
of the compass-assisted approach. and parameterized byus, os} and{uy, oy }, respectively. To
estimate a transformation function making two distribngo

close, the simplest way is to match the mean of these two
distributions, which can be done in two types of implemen-
A. Problem Statement tation: direct approach and indirect approach. For thectlire
A probabilistic location algorithm estimates the likeldtb approach, testing RSSs are transformed to match trainitag da
of observations for all candidate locations and selects tH&ectly; for the indirect approach, both training and itegt
one having maximum likelihood as the result. This can bi#ata are transformed to a same reference distribution.ign th
formulated as case, the transformation function#s(y;) = y; — py + ugs for
the direct approach, whereas we perfoffiy;) = y; — py
andF (s;) = s; — us for the indirect approach. If we consider

Il. PROPOSEDINDOOR POSITIONING SYSTEM

j* = argmax P(A,|S)
J

— wro e P(S|A;)P(A;) normalize both mean and variance, the direct approachesppli
- P(S) ) Fyi) = (yi—pv) 22 + ps, and the indirect approach

performsF (y;) = (y; — pwy)/oy andF (s;) = (s; — us)/os.
The direct approach transforms the testing data to share the
= argmax H P(s;|Aj), same mean and variance with the training data, while the
Tosim indirect approach transforms both training and testing dat
where j is the index of the reference location* is the the same zero mean and unit variance Gaussian distribution.

maximum-likelihood estimation)  is the model parameters of HOwever, in realistic situations, the impact of user orent
the j-th reference locations is the RSS observation, angis tion mismatch on the RSS values may not be linear, and the
thei-th element ofS. In Eq. (1),P(A,) is assumed to be equaltraining and testing distributions are not necessary.Gams.;s

vj andP(S) does not affect the decision result. This approad{reover, more accurate maiching is to normalize higher
is widely-used for indoor WLAN location fingerprinting Sys_statl_stlcal moments apart from the mean and variance. This
tems. However, this positioning algorithm is sensitive to o Motivates us to adopt histogram equalization to overcorse th

entation mismatch. Assuminyg is an orientation-mismatchedProblem. The histogram equalization described here ezpsli
observation, this process becomes all the moments of the probability distribution to those of

the reference probability distribution. Therefore, thisqedure
can be considered to be an extension of mean and variance
normalization.

Traditional works assume the availability of orientation
information during the offline and online phases while deali

= argmax P(S|A;)
J

J* = arg max P(A;[Y)
J

=arg max/P(Aj|Y,S)P(S|Y)dS
J

with the mismatch problem [50]—[53]. In other words, these
=arg mjf,iX/P(AﬂS)P(SW)dS (2) Methods are based on the orientation-aware radio map and the
o max/ P(S|Aj)P(Aj)P(S|Y)dS likelihood becomes
J P(ﬁ) A ]*** = arg max H P(S£0)|A§0)) (4)
. . J .
= arg max H /7SE|_)J)P(si|Y)dsi, i=1.M
P ECI Vi 54

where o indicates the current users orientaticxﬁ‘,’) means
where j** is the new estimation in this mismatched scethe current RSSs undes, and Aj represents the model
nario. We assume that; is only dependent on the currentparameters estimated from the data with the same orientatio
mismatched observatio?(s;|Y) = P(s;|y;). Based on the o. Because the orientation information is giveit;* extremely
point estimate, we assum@(s;|y;) = d(s; — $;(y;)), where approacheg* and such a compass-assisted approach can be



regarded as a performance upper bouRdng et al. [53], [54] CDF of reference Transformation

combines affinity propagation [55] and compressive sensing o funeen

to improve the positioning accuracy, where the current user

orientation is ignored. These approaches effectively cedu

the orientation mismatch effect; however, they requir@mpri

orientation data to enrich the radio map and real-time faekib |

from a digital compass. }
Although current high levels smartphones can be equipped 10 Cite) ;

with compass sensing functions that provide real-time user Cotxa) ! CDF of original

orientation, reconstructing a radio map for every possible [ dis;f("fﬂ;i"“

orientation is extremely time consuming and infeasiblee Th

goal of this paper aims at alleviating the impact of orientat

mismatch without the need of orientation information from e

ther radio map or embedded sensors. Liao et al. [56] proposed L

the orientation classifier approach, which is used to ptedic

the user’s orientation based on the moving trajectory anfl R8ig. 1. The main idea of the histogram equalization proced&s].

variations. However, the effectiveness of this method ddpe

on the assumption that a user moves at a constant speed in

a fixed direction. This assumption could be erroneous, and= F(x), which converts distribution, (z) into reference

modeling the orientation process is difficult due to the and distribution p,.(r), also converts the cumulative probability

user behavior. C, (z) into C, (r). Hence, the transformation functiafi(-)

convertingp, (z) into p,.(r) is expressed as

PR

B. Theoretical Foundation of Histogram Equalization

HEQ has been recognized as an effective digital image r=F(z)=C 1 [C, ()] @
processing method for optimizing the dynamic grey-level
ranges and improving the brightness and contrast [57]. Th@ereC,~' denotes the inverse function of the CIOF; (r),
purpose of HEQ is to provide a transformation that convergpecifying the value that corresponds to a certain cumulative
the probability density function of an original variabletan Probability.
a reference probability density function. In other wordss t  Considering practical implementations, the cumulative hi
transformation equalizes the histograms [58]. In addition tograms are typically used because the number of obsemgatio
digital image processing, HEQ has also been introducedito finite. Therefore, the procedure is referred to as HEQ
the field of speech processing [58]-[60]. in the literature. The main concept of HEQ is illustrated
As presented in Section II-A, this study proposes to use Fig. 1 [58], where the green and orange integral areas
HEQ to reduce the mismatch by equalizing all the momenitydicate the CDFs of: and r, respectively. The black line
of the probability distributions of training and testingtala represents the transformation by which the algorithm eges|
Now we assume; = F (x;), wherer; and x;, respectively, the histogram&’, () = C,.(r), as indicated in Eq. 7.
denote the-th reference and original data. Lgt(r) andp,.(x) HEQ can be implemented in two manners: direct and
denote the density functions of reference and original ,datadirect. In the former, the distribution of the trainingtda
respectively, and the goal of HEQ is to computé-) that is used as the reference distribution, and the HEQ is applied
convertsp,.(x) to approactp,.(r) [57], [58]. The derivation of to only convert the probabilistic density of testing data to

HEQ is provided below. match the one of training data. In the latter, we transform
First, we have: the probabilistic densities of both training and testingeda
aG (r) a reference distribution. The reference distribution ifindel

pr(r) = pa (G (1)) ar (5) in advance, and the Gaussian distribution is a common choice

. . . The following section describes how it can be adapted for Wi-
whereG(-) is the inverse function of'(-). Note that we make Fi indoor localization with details.

F(-) invertible by using probabilistic one-to-one transforma-
tion functionsC,.(-) and C,(-). The relationship between the
cgmulatlve probat.n.hty Qer)sn){ funpﬂons (CDFs) assomiht C. Proposed Indoor Positioning Algorithm
with these probability distributions is given by

1) Offline Phase:The proposed indoor WLAN positioning

Cu(z) = ffoo pz(xl)dﬂf, system consists of two phases: offline and online. In theneffli
- [F@) po(G(r ) 250 gy phase, RSS readings from Wi-Fi APs at reference positians ar
Fa or (6)  collected to build a database, called a radio map. The raw RSS

-F(z) ' ’
B é?OF(Z)()T Jr data are denoted bzyffj) [7], and indicate the-th RSS value
T measured from théth AP at thej-th reference location, with
where C,.(F(x)) and C, (z) are CDFs of the referenceorientationo. The offline-constructed radio map can then be
and original distribution, respectively. The transforimat spanned and represented ¥yas



7/’?% [7] 7/’?2; [7] 7/’%01;\7 [7] ¢ra) S dr) < S dra) S S P (13)
o o lr] as 7] by v [7] ) whereT'(-) denotes the original index of the test RSS com-
: : : ponents in such a way that = ¢r(,. Given S, an estimate
(0) (0) (0) of the equalized RSS component based on Eq. (7) is obtained

M,1 (7] M,2 [r] - M,N (7] using
whereM is the number of APs)V is the number of reference
locations,o is the measured orientations from an embedded 8 =F(s;) = Cr—e} [Cs (s1)] (14)
digital compassy = 1,...,Q is the index of temporal RSS

samples, and) is the number of samples for each raw RSS’hereCr_e,lf is the inverse of the reference COF;; represents
data. The row vector off indicates the spatial RSS vectorghe CDF of the sequence [ is the equalized transformation,
over N reference locations with) temporal length in the @nd3; is thei-th equalized RSS. One can computg (s;)
target environment. The column vector f, representing the by the emplrlcal distribution function vyhlch is the number
M dimensional RSS training samples for tleh reference of observations less than or equal 4pdivided by the total

location, can be represented as numbers. o o
The selection of reference distributié. ; for equalization
U, = [7?5?3, lbéf);, .. W%Z),j]T- 9) has been discussed in [57], [58], and two widely-used method

_ _ _ _ ~ are adopted in this study: Gaussian distribution (indiggwt
Incorporating the orientation parameter is a generadzatif proach) and training distribution (direct approach). Eirhile
the RSS collection procedure. This value may be missing fagopting a typical Gaussian distribution as a referenciée(ta

certain indoor positioning systems. It represents thectify ~Gaussianization) in the indirect approach, the inverse €
of determining the location based on a history of RSS paiterge expressed as

W¥. The goal of the proposed algorithm is to achieve robust )

location estimation in the presence of orientation misimatc 1 2=\ | 1

without assistance from a digital compass. That is, the pro- Cref(z) - [q; ( p = [® ()] (15)
posed algorithm allows the attribute to be ignored when where z is a reference Gaussian variable with meaand
the orientation is unavailable because of the lack of a aligit

compass standard deviationr. The variable:’ is the normalized Gaus-
; . . . ._sian variable and is an error function expressed as
2) Online phase:During the online phase, a mobile device P
requests positioning services by using the online RSSs from 1 2 2/,
M APs. Using similar notations, the real-time measurements P () = —/ e/ du (16)
V2T ) o
can be represented as

Next, the training distribution means estimating CDF from
the training radio map as reference for equalization. This
Vi (11 Rl la] direct approach can be viewed as an non-parametrical versio
¢2T[1]7¢2T[2]5"'7¢2T[q] pp . . . . . . p . )
o) — ’ ’ ’ (10) of the Gaussian distribution in which the shape is estimated
" : empirically. The only requirement is sufficient temporpktal
Yarr [, Y 2] U 1] Mxg radio data to calculate the training distribution. Notet tthee

h he | ion ind d th . . i training distribution can be stored in the offline stage such
where the location index and the orientation attribute A€hat the equalization does not require additional reaétim

unknown, representing that a digital compass is uNNeesSaLyition process

in the pr%?gsed algorithm. In this study, the rgal-time roees 3) Localization Using the Equalized RSAfter equalizing
ments®; " is called as a temporal-spatial radio, which consis{fe "gnjine temporal-spatial RSSs, the equalized compsnent
of ¢ temporal RSSs fromd/ APs. HEQ was then applied 1046 4dopted for positioning using a probabilistic approabiis

each component of this ter(rl)?(?ral-spatial measuremenbmathethod involves mapping the equalized RSSs to a physical lo-
The first step is to reshapk, " into a vector form as follows: cation by interpolation using the normalized likelinooduea

éz[¢1a¢27'"7¢q7¢q+17"'7¢1\4~q]- (11) N
Equation (11) is used to reshape the array in (10) into a row L= 1;P 17)
vector @ with M - ¢ elements, where, = 1, [1], ¢, = j=1
V10 [q], dg1 = Yo, [1], @anddar.q = s [g). where L, represents the coordinates of thieth reference

For simplification, a reorganized sequengeonsisting of location andP; is a normalized likelihood with respect to
M - q elements of a test RSS componentinis then defined all posterior probabilities as
as
S =1[51,82,.-,SMq] - (12) b P (3|L;) 18)
The difference between Eq. 12 and Eq. 11 lies in the order ’ fz P@BIL))
J
j=1

statistics, which can be represented as
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In Eq. 18, P(8|L;) represents the likelihood of measurifg
at the j-th reference location, wherg = [§1,§2,...,§M]T
are the equalized RSSs frold APs. Assuming the equalized
signals are modeled as Gaussian distributions, the statist
parameters, including a mean vectoy € RM*! and a
covariance matrix2; € RM*M  are calculated and stored for
eachL; during the off-line phase using

iy = 1S (19)
q T=1
Q; = E[(¥; —a;)(¥; — )" (20)

Where\ilj [] indicates ther-th equalized training RSS sample
at the j-th reference location and the notatiéh represents
the average ovey tempora' Samp|es_ HEQ was app“ed aglg 2. Part of the_ fourth floor plane of the test-bed buildimgere we
the Wi-Fi radio representation for both online measuremerfE"™o™med the experiments.

and offline training RSSs. This procedure is required for the

likelihood computation. The equalized training RSS samplgyhen RSS values are reliable, such as perfectly follow the
can be obtained using Eq. 14 as follows: radio propagation model, the transformation may loss some

location information and the side effect is possible in some
(21)  clean environments.

\iJj = Or_elf [C‘I‘j (\I/J)}

where the reference probabilistic distribution is the same
as that used in the on-line phase. If one selects a typical !l EXPERIMENTAL RESULTS AND ANALYSIS

Gaussian as reference probabilistic distributi(ﬂﬁg}f can be A. Experimental Setup
obtained using Eq. 15. If one selects the training distitout  This study involved experiments conducted on the fourth
as reference, estimating CDF from the training radio map #gor of the telecommunications building at Yuan-Ze Univer-

: -1 ot oor 2 ;
required to compute, , for equalization.C'y,(¥;) can be gjty Fig. 2 shows where the experiments were performed.

empirically estimated by dividing the number of observasio The size of the test-bed was 63.5 (m)36.5 (m) and 30
less than a certain value by the total numbers. After estiiat jetectable APs were present in the environm@ftg0). An

the statistical parameters based on the equalized RSSs, ABfs |aptop with Windows XP and NetStumbler network
likelihood weights P(8|Z;) in Eq. 18 can be calculated assoftware were used to gather Wi-Fi RSSs from the APs. The

follows: RSS readings were recorded at 70 reference locatirg 0),
separated by a distance of 1.2 to 2 m and arranged in four
A M 1 — (8 — ﬁj(m))2 orientations, to bu_ild the radio map for the indoor posiilirgj _
P(8|L;) = mexp W system. The testing samples were measured at 30 distinct
m=1 oAk, I 22) locations in this test field. To evaluate the orientatioreetfs,

wherei, (m) is them-th element of the mean vectay, and users orientated in four directions, north, east, soutt vaest

the APs are assumed to be uncorrelated. Although assumit| the clorre?ponglggRgSSS valres v(\)/ere recordeg. (?]E each
the diagonal matrix could be erroneous, this is widely used freterence focation, samplés=60) were recorded for

mplementng the proabiistc approsch cue t someakt 247 OTETALCN. A Gaussan it it ero meatan
constraints, such as insufficient training data. In thislgtthe y - HBQ

amount of data is not sufficient to train an accurate full matr?pptl)'et?] toﬁ?ach cgmplc_)nenthof the EI? m%ct)ral—tsr;]) a?al V\?—Elcratd
and thus, a diagonal matrix is used for the location estonati or both offine and online pnases. 10 obtain the transfoima

We note that although histogram estimation is required fEF iifwr;iggﬁpogggtﬂrtlri]f((a)r(r::mrel?\tlz\alli Elesttzgram 4W§swisetlrrenated
this algorithm, it is easier than traditional methods, vhhic y 9 eent 4o;,

require either a digital compass or an assumption of usér ando; are the mean and standard deviation of tké

behavior. The effect of orientation mismatch is assumed 8 mponent of the reshaped RSS vector, respectively.

cause a certain transformation of the RSS representatamesp )

Therefore, the proposed algorithm equalizes RSSs to prevBn Performance Evaluation

the performance degradation caused by mismatch orientatio First, Fig. 3 shows the distribution of RSS measurements
During positioning, HEQ is implemented for training datalanfrom four orientations, at the same location, from the same
real-time measurements in parallel, and the device coatetin AP. The lines indicate that the average RSS values from north
are estimated by mapping the equalized RSSs to the physieast, south, and west were -57.7, -56.6, -63.5, and -61.1 dBm
location using the normalized likelihood values. While -perespectively. This figure clearly reveals the changing RSS
forming the nonlinear transformation, this approach prese patterns problem caused by the user orientation variatton.
the ranking of RSSs instead of the numerical RSS valuésdicates the difficulty of accurately determining the lhca
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Fig. 3. The RSS distributions from the same AP with differerientations. £y 5 cumulative positioning error distribution undere tiorientation
mismatched condition (the orientation of training data &sty.

12F q

101 1 m. Numerical results showed that, in mismatched conditions

- the performance of the median positioning error degraded
b 43.91% on average. These results verify that the mismatch
| orientation easily influences the positioning accuracgabse
. the RSS patterns did not match in this scenario.
Fig. 5 displays the cumulative positioning error of the RSS
a4t . and the Gaussian equalized RSS (ERSS) in the condition of
orientation mismatch. In this experiment, the trainingadat
ol — ! L ‘ | were measured from the west whereas the testing data were
| | | | measured from four distinct directions, north, east, south
o I T and random. This figure shows that the proposed approach
Noth — East  South  West North  East  South  West outperformed the original method under various mismatch
Match Mismatch conditions. In this mismatched orientation, the 67-th patite

localization error of the proposed algorithm remained Wwelo
4.5 m, whereas that of the RSS increased to 7 m. The proposed
algorithm, based on the ERSS, improved the performance of
the raw RSS by approximately 28.84% in all cases. Fig. 6
based on RSSs without the assistance of orientation infornshows the cumulative positioning error under an altereativ
tion. orientation mismatched condition, where the training adetee

Fig. 4 shows a box plot of the statistical positioning error®easured from the north and the testing data was measured
in orientation match and mismatch conditions in the fingefrom east, south, west, and random. According to Fig. 6, ERSS
printing system. Each boxs red line represents the median, evidently enhanced the robustness, and the accuracy within
blue boxes represent the 25-th and 75-th percentile vadungls, M is improved from 48.75% to 79.12%. The results generally
the dashed lines represent the maximum and minimum valagree well with Fig. 5, indicating that the proposed aldunit
In this experiment, the term “match” means that both testirig capable of achieving robust location estimation, eveerwh
and training data are measured in the same user orientati@fgntation is mismatched, by equalizing the temporatiapa
By contrast, “mismatch” means that the testing data are meéadio power.
sured from orientations different from which the trainingtal Finally, the proposed algorithm is compared with four
were measured. For example, the first box for the mismattraditional approaches for addressing the problem of erien
condition indicates that the training data are measuregh frdation variation: the compass-assisted method [50], [61,
the north, and the testing data are measured from threg@rietrientation classifier [56], the compressive sensing [§34]
tions: east, south and west. Fig. 4 shows that a match betwead the radio map filtering methods [52]. The compass-askist
the testing and training orientation is desirable for migimg approach involves the assumption that both the device and
the positioning error in a fingerprinting-based locatiostsyn. radio map contain real-time orientation information and-es
By contrast, the performance degrades when the orientatimating the testing measurement according to the oriemtatio
differs between the testing phase and the training phagbeln matched radio map only. Thus, this approach can be regarded
match condition, the median error was approximagelyto 3 as a perfect match case. The orientation classifier estmate
m, whereas that of the mismatch condition increasettd5.3 the user’s orientation according to the moving trajectanyg a

Error Distance (in meters)
[
T

Fig. 4. Box plot of positioning errors under orientation ofed and
mismatched conditions.
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Fig. 6. Cumulative positioning error distribution under aiternative Fig. 7. Performance comparison between different positgpmlgorithms.
orientation mismatched condition (the orientation ofrtiiag data is north).

result again verified that the ERSS is a robust positioning

varying RSSs based on the assumption that a user moves fharacteristic. The advantage of the proposed algoritttireis
constant direction at a constant speed. When implemeriting IO @ssumptions are made regarding the orientation process,
orientation classifier, this study assumed a 75% accuracyVgich is difficult to model because of the random user
estimated direction. The compressive sensing approach cdtghavior. Moreover, unlike traditional methods, whichturiee
bines affinity propagation to improve the positioning aemyr ~ assistance from a digital compass, the proposed algorites d
where the real-time orientation information can be ignoted Not require additional hardware and orientation inforomati
this method, we set the number of clusters to 5 and the redud&dn radio map .

dimension to 10. The radio map filtering approach removes

incompatible RSS samples during the offline and online phase Variation of Reference Distributions

We have implemented these methods and compared the posin this section, we performed extra experiments to evaluate
tioning accuracy in a mismatch scenario. Note that, althoughe improvement of the proposed algorithm using different
compressive sensing and radio map filtering are robust rigference distributions. We estimated the referenceilligion
orientation mismatch, they are still based on an extendgfiough the training temporal-spatial radio map insteadssf
orientation-aware radio map (i.e., assume the availgbift ing Gaussian to perform HEQ. Compared to Gaussianization,
digital compasses during the offline and online phase).  the advantage of this approach is that only the testing RSSs
Fig. 7 shows a comparison of the positioning accuracy afe required to be transformed. Tables | and Il report five
various algorithms in a mismatch scenario, where the eai@'s error measures numerically including average, 50%, 67%4 90
cumulated from all mismatch conditions and the orientatiquercentile errors, and STD (standard deviation) in two mis-
information of radio map is not given. This figure indicatee t match conditions, where ref-G and ref-T indicate the rafeee
effectiveness of the orientation classifier approach. Goen distribution is obtained, respectively, by Gaussianaatind
with the traditional RSS method, which is easily influencetiaining data. The experimental setup in Tables | and Il & th
by the user orientation, the orientation classifier imptbvesame as that in Fig. 5 and Fig. 6, respectively.
the median error by 38.34%. The compass-assisted approacBoth tables show that, no matter what reference distri-
achieved the most favorable performance, reducing theanedbutions the proposed algorithm uses, ERSS still maintained
error by 51.43% compared with the RSS. This is because ttodustness superior to that of RSS. This again demonstrates
location is accurately estimated according to the origaniat the effectiveness of the proposed mechanism. Nevertheless
matched radio map. This figure shows that the radio map filteve discover that the performance slightly differs in diffet
ing does not provide significant improvement, as comparedgoenarios. For example, Tab. Il shows that the selection of
RSS-based method. This is because probabilistic scheraestaining data as reference given better results than Gaussi
based on the statistics of the samples, and sufficient nuaibefor localization. It seems intuitive because the distiitut
samples are required to estimate the model parameters. Tisiempirically calculated using additional informatiorotfin
result agrees well with that in [52]. Next, the result indesa radio map. However, in Tab. I, Gaussianization outperforms
the effectiveness of the compressive sensing approacls. Tthie training data reference when the testing orientations a
may be that the clustering method reduces the large error,east and south. This is because the estimated probabilistic
fewer reference locations are considered. More impostanttlistribution is susceptible to data variation. Changing th
Fig. 7 shows that the proposed algorithm provided betterientation of training data may introduce bias or errorthim
performance compared with the orientation classifier, ath e global statistic, making precise distribution estimatilificult.
comparable accuracy to the compass-assisted method. Bhether critical issue is the amount of training data fromioa
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FIVE POSITIONING ERROR MEASURESIN METERS) FOR DIFFERENT ~ North
ORIENTATION (TRAINING: WEST). - - East
3l - - - - South|]
N == West
[ Testing: north | DN
Methods$,Performance|| Average | 50" | 67¢F | 90t® | STD 25 b 1
RSS-based method 5.22 522 | 715 | 941 | 3.04 & B \
ERSS-based (Ref-G) 3.95 3.69 | 452 | 6.89 | 2.27 % oL ! ' |
ERSS-based (Ref-T) 3.75 358 | 450 | 6.72 | 2.13 éc’ [ '
Testing: east 2 ' Voo
= L 1 > |
Methods Performance[] Average | 50" | 67" [ 90°* | STD g 1 N
RSS-based method || 5.23 | 5.37 | 7.38 | 9.50 | 3.35 £ | semmaiie ‘\
ERSS-based (Ref-G)|| 3.73 | 3.46 | 4.27 | 7.39 | 2.42 1f ot HR IR AN b
ERSS-based (Ref-T)|| 3.88 | 3.72 | 460 | 6.67 | 2.13 ; R N T
Testing: south 05l I , N T PO AN
- PRl U ! TN \\ i
Methods,Performance|| Average | 50°" | 67" | 90" | STD JOONGS N
RSS-based method 5.10 525 | 7.28 | 9.48 | 3.23 o ‘ ‘ ‘ ‘ ‘ ‘ LT ‘
ERSS-based (Ref-G) 3.74 360 | 429 | 6.71 | 2.26 %05 100 —95 90 -85 -80 -75 -70 65 60 55
ERSS-based (Ref-T)||  3.86 | 3.72 | 4.77 | 7.05 | 2.20 RSS (dBm)
Testing: random
Fig. 8. The impact of diverse orientations on the probabitiensity of
Methods Performance|| Average | 50" | 67" | 90/ | STD et . .
RSS-based method 509 =19 720 942 | 394 temporal-spatial RSS samples at a fixed reference location.
ERSS-based (Ref-G) 3.64 3.26 | 418 | 651 | 2.15
ERSS-based (Ref-T) 3.79 3.60 | 438 | 743 | 2.44
TABLE I |
FIVE POSITIONING ERROR MEASURE$IN METERS) FOR DIFFERENT i
ORIENTATION (TRAINING: NORTH). &
| Testing: east | = i )‘;
Methods,Performance|| Average | 50 | 67¢" | 90t" | STD g ] %‘;‘: i
RSS-based method 3.83 403 | 500 | 6.15 | 1.90 @ oha
ERSS-based (Ref-G)|| 293 | 259 | 3.23 | 509 | 1.96 © (IF .
ERSS-based (Ref-T)|| 250 | 2.31 | 3.23 | 6.27 | 2.27 i i i
Testing: south } HE
Methods$,Performance|| Average | 50" | 67¢F | 90t® | STD I N!-! :
RSS-based method || 3.90 | 4.10 | 5.04 | 6.39 | 2.02 } o R
ERSS-based (Ref-G) 3.53 317 | 411 | 6.99 | 2.24 | South
ERSS-based (Ref-T) 2.49 237 | 312 | 582 | 2.34 I ‘ == West |
Testing: west 500 /1000 1500
Index of reshaped temporal-spatial radio power
Methods,Performance|| Average | 50 | 67" | 90t® | STD
RSS-based method || 4.04 | 4.12 | 5.09 | 6.67 | 2.02 Fig. 9. The impact of diverse orientations on the absoluté R&ues of the
ERSS-based (Ref-G)[| 3.37 2.95 | 4.00 | 6.67 | 2.24 reshaped temporal-spatial vector (Eq. 9) at a fixed referdmeation.
ERSS-based (Ref-T) 241 223 | 3.00 | 6.09 | 241
Testing: random
Methods,Performance|| Average | 50 | 67¢® | 90t® | STD . .
RSSbased method 218 T 203 T 520 T 803 272 estlr_nateq according to the measurements from 1500 temporal
ERSS-based (Ref-G)||  3.34 300 | 421 | 659 | 2.08 spatial signals (50 temporal samples from 30 APs) at a
ERSS-based (Ref-T)|| 242 | 224 | 3.05 | 6.14 | 2.37 specific reference location. This figure shows that the diver

orientations severely affect the probability distribusoof the
Wi-Fi radio power. In the proposed algorithm, the effecttodf t

map. When the target indoor environment is large, the amouwntientation is assumed to be a certain transformation of the
of estimation samples may be insufficient for a reliable hi&RSS representation space, incurring a considerable mismat
togram computation. As mentioned, the data-driven refaxrerproblem when training and locating orientations diffelg.F8
distribution could enhance the robustness against otienta verifies this assumption. This observation is generallysin
mismatch. Nevertheless, we note that, Gaussianization igeat for all reference locations. Fig. 9 shows the absoll8& R
safer approach to accommodate as much data variationvakies of the reshaped vector in Eq. 9. This figure shows how
possible in the face of limited training data, unknown indodhe multidimensional RSSs from four orientations change ov
environments and training orientation.

D. Analysis of Results
To provide insight into the proposed algorithm, how th& be difficult when using the fingerprinting-based system.

time. Similarly, this figure shows that a substantial infloen
resulted from the different orientations. This verifies dfiect

of orientation on measuring Wi-Fi radio, and the mismatch
causes determining the location based on training RSSrpatte

ERSS compensates for the effect of orientation mismatch inFig. 10 shows an equalization case, where the testing
location estimation is analyzed in this section. Fig. 8 shoWlRSS measured from the E are transformed such that their
the original Wi-Fi RSS probability distributions, which vee cumulative histogram matches that of the reference trginin
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Fig. 10. An equalization case. The testing RSSs measured the E are

transformed such that their cumulative histogram matdhatsaf the reference Fig. 11.  An example of the transformation function to eqelRSS and the
reference histogram function.

training data measured from the W.

data measured from the W. For example, the proposed algo-
rithm changes the RSS values -85 into -75 dBm in Fig. 10
because the same cumulative probability 50% is presented in
original and equalized domain, respectively. Note thathis t
case, the positioning error using RSS is 6.84 m on average
under orientation mismatch conditions whereas it was reduc
to 2.84 m using the equalized RSS. That means that the
impact of orientation was significantly alleviated throuitle
equalization process. In other words, the proposed alguorit
compensates for variation in user orientations, whichodist

the RSS space. Similar plots can be observed for testing date
at different locations and orientations, and only a typtzde

is shown in Fig. 10 because of space limitations.

Fig. 11 shows the transformations obtained in Gaussianiza-
tion case used to convert the original RSS histograms irgo th
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reference histogram, by using the proposed algorithm.fidtis Fig. 12.
ure shows that, in this case, the RSS values ranging fromo-5@¢ualized Gaussian RSSs at a fixed reference location.

-100 dBm were transformed into an equalized version ranging

from -4 to +4. When a Gaussian was used as the reference

distribution, the corresponding reference histogram vesslye
obtained and is also depicted in Fig. 11. After the equatimat

the histograms of the transformed RSS representations are
shown in Fig. 12. This figure shows that the transformed
RSSs approximate the reference probability distributiod a
indicates that the impact of orientation on the distributieas
considerably alleviated, as indicated in Figs. 8 and 9. When
an orientation mismatch occurs between training and logati
conditions, the proposed algorithm normalizes all momehts
RSSs distribution to those of the reference distributidvste

that although the absolute RSS vales were equalized, the rel
tive information between the multi-dimensional RSSs wik st
preserved for localization. Finally, Fig. 13 shows the tenab-
spatial trajectory of the ERSSs. Compared with Fig. 9, Fig.
13 shows that the orientation mismatch was substantially
reduced. The experiments and analysis reveal the effeetbge
of the proposed algorithm in providing robust indoor Wi-F
localization in the presence of orientation mismatch.
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IV. CONCLUSION [14]

This study proposes a novel approach based on HEQ
to compensate for an orientation mismatch in robust Wi-Fi
localization. By transforming the temporal-spatial ragignal  [15]
strength into a reference histogram, the proposed algorith
effectively prevents the performance degradation under ofi6]
entation mismatch conditions. Specifically, HEQ is applied
to each component of temporal-spatial radio to improve the
robustness of indoor localization systems. The proposed &
proach is conceptually simple and easy to implement in pract
cal applications. The advantages of the proposed algoattem (18]
that it does not involve assumptions regarding the randam us
behavior, and does not require embedding a digital compass
in mobile devices. The experiments, conducted in an indddp]
Wi-Fi environment, confirm the superiority of the proposed
algorithm in orientation mismatch compensation. Restits\s
that the proposed algorithm outperforms the orientatias-cl (20!
sifier method and provides a comparable positioning acgurac

to that of the compass-assisted approach.
[21]
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