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Compensating for Orientation Mismatch in Robust
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Abstract—The performance of Wi-Fi positioning systems de-
grades severely when the user orientation differs between locating
and training phases. This paper proposes a novel approach
based on histogram equalization to compensate for an orientation
mismatch in robust Wi-Fi localization. The proposed method
involves converting the temporal-spatial radio signal strength into
a reference function (i.e., equalizing the histogram). By using
equalized signals, the proposed algorithm improves the robust-
ness of location estimation even in the presence of mismatch
orientation. The advantages of the proposed algorithm over
traditional methods are that the assumption of user behavior is
not required and a digital compass does not need to be embedded
on a mobile device. Experiments conducted in Wi-Fi networks
demonstrated the effectiveness of the proposed algorithm.The
results show that the proposed algorithm outperforms the ori-
entation classifier method and provides comparable positioning
accuracy to the compass-assisted approach.

Index Terms—Histogram equalization (HEQ), mobile position-
ing, received signal strength (RSS), user orientation, Wi-Fi

I. I NTRODUCTION

L OCATION awareness has become a crucial concern for
various mobile applications [1]–[7]. Recently, numerous

studies have addressed location estimation by using existing
Wi-Fi infrastructure to compensate for the weakness of the
Global Positioning System (GPS) in urban areas and indoor
environments [8]–[11]. Because of the frequent deploymentof
access points (APs), Wi-Fi-based localization has gained con-
siderable attention over the last several years, and the received
signal strength (RSS) is commonly adopted as a positioning
characteristic [12]–[14]. Among the various Wi-Fi positioning
systems, the fingerprinting-based approach, in which the user’s
location is estimated by matching online RSSs with the values
pre-stored in a radio map, is one of the most feasible solutions
[15]–[18]. Because this approach provides a high positioning
accuracy in a GPS-less environment, researchers have recently
proposed various fingerprinting-based localization algorithms
[19]–[21].

Although Wi-Fi-based localization shows great promise, a
key challenge in real-time location estimation is managingthe
robustness from various perspectives [22], [23]. For example,
researchers have addressed heterogeneity in the hardware
of Wi-Fi devices [24]–[26]. Previous studies have designed
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secure location systems that can identify malicious network
attacks and reject them from the positioning system [27]–[31].
Several studies have investigated noise and multipath distortion
[32]–[38]. Robust pattern matching, outliers removement,and
data-overfitting problems have also been discussed in the
literature [39]–[44].

Radio irregularity is a common occurrence in wireless envi-
ronments [40], [45], [46]. The performance of fingerprinting-
based localization systems degrades severely when radio envi-
ronments between training and testing RSSs differ from each
other [47]. One type of radio mismatch is caused by the
different user orientations. Users tend to carry mobile devices
in front of them so that they can view the displays and use
the touch screen. However, the human body consists of more
than 50% water and, hence, might block the transmission
of 2.4 GHz Wi-Fi radios [48]. Researchers have performed
experiments regarding the impact of user/device orientation
on RSS. Previous studies have acknowledged this orientation
problem and have indicated that RSS varies substantially
depending on the user’s orientation, even at a fixed location
[42], [49]. However, in a fingerprinting-based system, the
mismatch between training and locating orientations makes
it difficult to accurately determine the location based on RSS
patterns. This severe problem is referred to as “orientation
mismatch.”

To overcome this problem, [50] proposed a compass-
assisted approach in which the testing RSS is matched ac-
cording to the orientation-matched radio map only, rather
than the entire database. A similar approach was presented
in [51] and [52], in which fingerprinting is extended with
orientation information. These approaches effectively reduce
the orientation mismatch effect; however, they require prior
orientation data to enrich the radio map and real-time feedback
from a digital compass. Although current high level smart-
phones can be equipped with compass sensing functions that
provide real-time user orientation, reconstructing a radio map
for every possible orientation is extremely time consumingand
infeasible.

This study proposes a novel approach based on histogram
equalization (HEQ) to compensate for an orientation mismatch
in robust Wi-Fi localization. The basic idea is to convert the
probability density function of original RSS vectors into aref-
erence probability density function. Specifically, the proposed
algorithm transforms the histogram of each component of the
temporal-spatial Wi-Fi radio into that of a reference (i.e., it
equalizes the histogram). By using the equalized RSSs, the
proposed algorithm is capable of improving the robustness
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of location estimation, even in the presence of mismatch
orientation. Compared with traditional methods, the proposed
algorithm is easy to implement in practical applications. The
proposed algorithm does not involve assumptions regarding
user behavior, and the only assumption is that the effect of
orientation mismatch causes a certain transformation of the
RSS representation space.

The proposed algorithm was applied in an indoor Wi-Fi
environment, and RSSs were collected from various user ori-
entations. On-site experiments demonstrated the effectiveness
of the proposed algorithm in compensating for the orienta-
tion mismatch. Results showed that the proposed approach
outperforms the orientation classifier in reducing the mean
positioning errors between 16% and 42% in various mismatch
conditions. The results also demonstrated that the proposed
algorithm provides a comparable positioning accuracy to that
of the compass-assisted approach.

II. PROPOSEDINDOOR POSITIONING SYSTEM

A. Problem Statement

A probabilistic location algorithm estimates the likelihood
of observations for all candidate locations and selects the
one having maximum likelihood as the result. This can be
formulated as

j∗ = argmax
j
P (Λj|S)

= argmax
j

P (S|Λj)P (Λj)

P (S)

= argmax
j
P (S|Λj)

= argmax
j

∏

i=1...M

P (si|Λj),

(1)

where j is the index of the reference location,j∗ is the
maximum-likelihood estimation,Λj is the model parameters of
thej-th reference location,S is the RSS observation, andsi is
thei-th element ofS. In Eq. (1),P (Λj) is assumed to be equal
∀j andP (S) does not affect the decision result. This approach
is widely-used for indoor WLAN location fingerprinting sys-
tems. However, this positioning algorithm is sensitive to ori-
entation mismatch. AssumingY is an orientation-mismatched
observation, this process becomes

j∗∗ = argmax
j
P (Λj |Y)

= argmax
j

∫
P (Λj|Y, S)P (S|Y)dS

= argmax
j

∫
P (Λj|S)P (S|Y)dS

= argmax
j

∫
P (S|Λj)P (Λj)

P (S)
P (S|Y)dS

= argmax
j

∏

i=1...M

∫
P (si|Λj)

P (si)
P (si|Y)dsi,

(2)

where j∗∗ is the new estimation in this mismatched sce-
nario. We assume thatsi is only dependent on the current
mismatched observation,P (si|Y) = P (si|yi). Based on the
point estimate, we assumeP (si|yi) = δ(si − ŝi(yi)), where

ŝi (yi) = F (yi), ŝi denotes the orientation-matched signal,
F (·) denotes a transformation function, andδ(·) is a Kronecker
delta function. The new estimation in Eq. (2) can be re-written
as:

j∗∗ = argmax
j

∏

i=1...M

P (ŝi(yi)|Λj) (3)

Comparing Eq. (3) with Eq. (1), we can observe the
difference between the likelihood formulations, i.e.,j∗∗ 6= j∗.
The goal of the robust location estimation is to makej∗∗

approachesj∗. That is, ŝi (yi) = F (yi) → si. However,
designing the transformation function that achieves the above
is difficult without a set of paired training and testing data.

Now consider a rather naive assumption that the distribu-
tions of training data and observation data are both Gaussians
and parameterized by{µS, σS} and{µY, σY}, respectively. To
estimate a transformation function making two distributions
close, the simplest way is to match the mean of these two
distributions, which can be done in two types of implemen-
tation: direct approach and indirect approach. For the direct
approach, testing RSSs are transformed to match training data
directly; for the indirect approach, both training and testing
data are transformed to a same reference distribution. In this
case, the transformation function isF (yi) = yi−µY+µS for
the direct approach, whereas we performF (yi) = yi − µY

andF (si) = si−µS for the indirect approach. If we consider
normalize both mean and variance, the direct approach applies
F (yi) = (yi − µY)

σS

σY
+ µS, and the indirect approach

performsF (yi) = (yi − µY)/σY andF (si) = (si − µS)/σS.
The direct approach transforms the testing data to share the
same mean and variance with the training data, while the
indirect approach transforms both training and testing data to
the same zero mean and unit variance Gaussian distribution.

However, in realistic situations, the impact of user orienta-
tion mismatch on the RSS values may not be linear, and the
training and testing distributions are not necessary Gaussians.
Moreover, more accurate matching is to normalize higher
statistical moments apart from the mean and variance. This
motivates us to adopt histogram equalization to overcome this
problem. The histogram equalization described here equalizes
all the moments of the probability distribution to those of
the reference probability distribution. Therefore, this procedure
can be considered to be an extension of mean and variance
normalization.

Traditional works assume the availability of orientation
information during the offline and online phases while dealing
with the mismatch problem [50]–[53]. In other words, these
methods are based on the orientation-aware radio map and the
likelihood becomes

j∗∗∗ = argmax
j

∏

i=1...M

P (s
(o)
i |Λ(o)

j ) (4)

where o indicates the current users orientation,s(o)i means
the current RSSs undero, and Λo

j represents the model
parameters estimated from the data with the same orientation
o. Because the orientation information is given,j∗∗∗ extremely
approachesj∗ and such a compass-assisted approach can be



3

regarded as a performance upper bound.Feng et al. [53], [54]
combines affinity propagation [55] and compressive sensing
to improve the positioning accuracy, where the current user
orientation is ignored. These approaches effectively reduce
the orientation mismatch effect; however, they require prior
orientation data to enrich the radio map and real-time feedback
from a digital compass.

Although current high levels smartphones can be equipped
with compass sensing functions that provide real-time user
orientation, reconstructing a radio map for every possible
orientation is extremely time consuming and infeasible. The
goal of this paper aims at alleviating the impact of orientation
mismatch without the need of orientation information from ei-
ther radio map or embedded sensors. Liao et al. [56] proposed
the orientation classifier approach, which is used to predict
the user’s orientation based on the moving trajectory and RSS
variations. However, the effectiveness of this method depends
on the assumption that a user moves at a constant speed in
a fixed direction. This assumption could be erroneous, and
modeling the orientation process is difficult due to the random
user behavior.

B. Theoretical Foundation of Histogram Equalization

HEQ has been recognized as an effective digital image
processing method for optimizing the dynamic grey-level
ranges and improving the brightness and contrast [57]. The
purpose of HEQ is to provide a transformation that converts
the probability density function of an original variable into
a reference probability density function. In other words, the
transformation equalizes the histograms [58]. In additionto
digital image processing, HEQ has also been introduced to
the field of speech processing [58]–[60].

As presented in Section II-A, this study proposes to use
HEQ to reduce the mismatch by equalizing all the moments
of the probability distributions of training and testing data.
Now we assumeri = F (xi) , whereri andxi, respectively,
denote thei-th reference and original data. Letpr(r) andpx(x)
denote the density functions of reference and original data,
respectively, and the goal of HEQ is to computeF (·) that
convertspx(x) to approachpr(r) [57], [58]. The derivation of
HEQ is provided below.

First, we have:

pr(r) = px (G (r))
∂G (r)

∂r
(5)

whereG(·) is the inverse function ofF (·). Note that we make
F (·) invertible by using probabilistic one-to-one transforma-
tion functionsCr(·) andCx(·). The relationship between the
cumulative probability density functions (CDFs) associated
with these probability distributions is given by

Cx(x) =
∫ x

−∞
px(x

′

)dx
′

=
∫ F (x)

−∞
px(G(r

′

))∂G(r
′

)

∂r
′ dr

′

=
∫ F (x)

−∞
pr(r

′

)dr
′

= Cr(F (x))

(6)

where Cr(F (x)) and Cx (x) are CDFs of the reference
and original distribution, respectively. The transformation

Transformation

function

x1=F(x0)

1.0

1.0

CDF of reference

distribution

p1(x1)

CDF of original

distribution

p0(x0)

C1(x1)

C0(x0)

x1

x0

Fig. 1. The main idea of the histogram equalization procedure [58].

r = F (x), which converts distributionpx(x) into reference
distribution pr(r), also converts the cumulative probability
Cx (x) into Cr (r). Hence, the transformation functionF (·)
convertingpx(x) into pr(r) is expressed as

r = F (x) = C−1
r [Cx (x)] (7)

whereC−1
r denotes the inverse function of the CDFCr (r),

specifying the valuer that corresponds to a certain cumulative
probability.

Considering practical implementations, the cumulative his-
tograms are typically used because the number of observations
is finite. Therefore, the procedure is referred to as HEQ
in the literature. The main concept of HEQ is illustrated
in Fig. 1 [58], where the green and orange integral areas
indicate the CDFs ofx and r, respectively. The black line
represents the transformation by which the algorithm equalizes
the histogramsCx(x) = Cr(r), as indicated in Eq. 7.

HEQ can be implemented in two manners: direct and
indirect. In the former, the distribution of the training data
is used as the reference distribution, and the HEQ is applied
to only convert the probabilistic density of testing data to
match the one of training data. In the latter, we transform
the probabilistic densities of both training and testing data to
a reference distribution. The reference distribution is defined
in advance, and the Gaussian distribution is a common choice.
The following section describes how it can be adapted for Wi-
Fi indoor localization with details.

C. Proposed Indoor Positioning Algorithm

1) Offline Phase:The proposed indoor WLAN positioning
system consists of two phases: offline and online. In the offline
phase, RSS readings from Wi-Fi APs at reference positions are
collected to build a database, called a radio map. The raw RSS
data are denoted byψ(o)

i,j [τ ], and indicate theτ -th RSS value
measured from thei-th AP at thej-th reference location, with
orientationo. The offline-constructed radio map can then be
spanned and represented byΨ as
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Ψ
(o) =




ψ
(o)
1,1 [τ ] ψ

(o)
1,2 [τ ] · · · ψ

(o)
1,N [τ ]

ψ
(o)
2,1 [τ ] ψ

(o)
2,2 [τ ] · · · ψ

(o)
2,N [τ ]

...
...

. . .
...

ψ
(o)
M,1 [τ ] ψ

(o)
M,2 [τ ] · · · ψ

(o)
M,N [τ ]




(8)

whereM is the number of APs,N is the number of reference
locations,o is the measured orientations from an embedded
digital compass,τ = 1, . . . , Q is the index of temporal RSS
samples, andQ is the number of samples for each raw RSS
data. The row vector ofΨ indicates the spatial RSS vectors
over N reference locations withQ temporal length in the
target environment. The column vector ofΨ, representing the
M dimensional RSS training samples for thej-th reference
location, can be represented as

Ψj = [ψ
(o)
1,j , ψ

(o)
2,j , · · ·ψ

(o)
M,j]

T. (9)

Incorporating the orientation parameter is a generalization of
the RSS collection procedure. This value may be missing for
certain indoor positioning systems. It represents the difficulty
of determining the location based on a history of RSS patterns
Ψ. The goal of the proposed algorithm is to achieve robust
location estimation in the presence of orientation mismatch
without assistance from a digital compass. That is, the pro-
posed algorithm allows the attributeo to be ignored when
the orientation is unavailable because of the lack of a digital
compass.

2) Online phase:During the online phase, a mobile device
requests positioning services by using the online RSSs from
M APs. Using similar notations, the real-time measurements
can be represented as

Ψ
(o)
r =




ψ1,r [1] , ψ1,r [2] , . . . , ψ1,r [q]
ψ2,r [1] , ψ2,r [2] , . . . , ψ2,r [q]

...
ψM,r [1] , ψM,r [2] , . . . , ψM,r [q]




M×q

(10)

where the location indexr and the orientation attribute are
unknown, representing that a digital compass is unnecessary
in the proposed algorithm. In this study, the real-time measure-
mentsΨ(o)

r is called as a temporal-spatial radio, which consists
of q temporal RSSs fromM APs. HEQ was then applied to
each component of this temporal-spatial measurement matrix.
The first step is to reshapeΨ(o)

r into a vector form as follows:

Φ = [φ1, φ2, . . . , φq, φq+1, . . . , φM·q] . (11)

Equation (11) is used to reshape the array in (10) into a row
vector Φ with M · q elements, whereφ1 = ψ1,r [1], φq =
ψ1,r [q], φq+1 = ψ2,r [1], andφM·q = ψM,r [q].

For simplification, a reorganized sequenceS consisting of
M · q elements of a test RSS component inφr is then defined
as

S = [s1, s2, . . . , sM·q] . (12)

The difference between Eq. 12 and Eq. 11 lies in the order
statistics, which can be represented as

φT (1) ≤ φT (2) ≤ · · · ≤ φT (a) ≤ · · · ≤ φT (M·q) (13)

whereT (·) denotes the original index of the test RSS com-
ponents in such a way thatsa = φT (a). GivenS, an estimate
of the equalized RSS component based on Eq. (7) is obtained
using

ŝi = F (si) = C−1
ref [CS (si)] (14)

whereC−1
ref is the inverse of the reference CDF,CS represents

the CDF of the sequenceS, F is the equalized transformation,
and ŝi is the i-th equalized RSS. One can computeCS(si)
by the empirical distribution function which is the number
of observations less than or equal tosi divided by the total
numbers.

The selection of reference distributionCref for equalization
has been discussed in [57], [58], and two widely-used methods
are adopted in this study: Gaussian distribution (indirectap-
proach) and training distribution (direct approach). First, while
adopting a typical Gaussian distribution as a reference (called
Gaussianization) in the indirect approach, the inverse CDFcan
be expressed as

C−1
ref (z) =

[
Φ

(
z − µ

σ

)]
−1

= [Φ (z′)]
−1 (15)

where z is a reference Gaussian variable with meanµ and
standard deviationσ. The variablez′ is the normalized Gaus-
sian variable andΦ is an error function expressed as

Φ (z′) =
1√
2π

∫ z′

−∞

e−u2/2du (16)

Next, the training distribution means estimating CDF from
the training radio map as reference for equalization. This
direct approach can be viewed as an non-parametrical version
of the Gaussian distribution in which the shape is estimated
empirically. The only requirement is sufficient temporal-spatial
radio data to calculate the training distribution. Note that the
training distribution can be stored in the offline stage such
that the equalization does not require additional real-time
estimation process.

3) Localization Using the Equalized RSS:After equalizing
the online temporal-spatial RSSs, the equalized components
are adopted for positioning using a probabilistic approach. This
method involves mapping the equalized RSSs to a physical lo-
cation by interpolation using the normalized likelihood value:

L̂ =

N∑

j=1

Lj · P̂j (17)

where Lj represents the coordinates of thej-th reference
location andP̂j is a normalized likelihood with respect to
all posterior probabilities as

P̂j =
P (ŝ|Lj)

N∑
j=1

P (̂s|Lj)

(18)
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In Eq. 18,P (̂s|Lj) represents the likelihood of measuringŝ
at the j-th reference location, wherês = [ŝ1, ŝ2, . . . , ŝM ]

T

are the equalized RSSs fromM APs. Assuming the equalized
signals are modeled as Gaussian distributions, the statistical
parameters, including a mean vectorûj ∈ <M∗1 and a
covariance matrixΩj ∈ <M∗M , are calculated and stored for
eachLj during the off-line phase using

ûj =
1

q

q∑

τ=1

Ψ̂j [τ ] (19)

Ωj = E[(Ψ̂j − ûj)(Ψ̂j − ûj)
T] (20)

whereΨ̂j [τ ] indicates theτ -th equalized training RSS sample
at the j-th reference location and the notationE represents
the average overq temporal samples. HEQ was applied as
the Wi-Fi radio representation for both online measurements
and offline training RSSs. This procedure is required for the
likelihood computation. The equalized training RSS samples
can be obtained using Eq. 14 as follows:

Ψ̂j = C−1
ref

[
CΨj

(Ψj)
]

(21)

where the reference probabilistic distribution is the same
as that used in the on-line phase. If one selects a typical
Gaussian as reference probabilistic distributions,C−1

ref can be
obtained using Eq. 15. If one selects the training distribution
as reference, estimating CDF from the training radio map is
required to computeC−1

ref for equalization.CΨj
(Ψj) can be

empirically estimated by dividing the number of observations
less than a certain value by the total numbers. After estimating
the statistical parameters based on the equalized RSSs, the
likelihood weightsP (̂s|Lj) in Eq. 18 can be calculated as
follows:

P (̂s|Lj) =

M∏

m=1

1√
2π · Ωj(m,m)

exp

(
−(ŝm − ûj(m))

2

2Ωj(m,m)

)

(22)
whereûj(m) is them-th element of the mean vector̂uj and
the APs are assumed to be uncorrelated. Although assuming
the diagonal matrix could be erroneous, this is widely used for
implementing the probabilistic approach due to some practical
constraints, such as insufficient training data. In this study, the
amount of data is not sufficient to train an accurate full matrix
and thus, a diagonal matrix is used for the location estimation.
We note that although histogram estimation is required for
this algorithm, it is easier than traditional methods, which
require either a digital compass or an assumption of user
behavior. The effect of orientation mismatch is assumed to
cause a certain transformation of the RSS representation space.
Therefore, the proposed algorithm equalizes RSSs to prevent
the performance degradation caused by mismatch orientation.
During positioning, HEQ is implemented for training data and
real-time measurements in parallel, and the device coordinates
are estimated by mapping the equalized RSSs to the physical
location using the normalized likelihood values. While per-
forming the nonlinear transformation, this approach preserves
the ranking of RSSs instead of the numerical RSS values.

63.5 m

3
6
.5

 m

Fig. 2. Part of the fourth floor plane of the test-bed building, where we
performed the experiments.

When RSS values are reliable, such as perfectly follow the
radio propagation model, the transformation may loss some
location information and the side effect is possible in some
clean environments.

III. E XPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

This study involved experiments conducted on the fourth
floor of the telecommunications building at Yuan-Ze Univer-
sity. Fig. 2 shows where the experiments were performed.
The size of the test-bed was 63.5 (m)× 36.5 (m) and 30
detectable APs were present in the environment (M=30). An
Asus laptop with Windows XP and NetStumbler network
software were used to gather Wi-Fi RSSs from the APs. The
RSS readings were recorded at 70 reference locations (N=70),
separated by a distance of 1.2 to 2 m and arranged in four
orientations, to build the radio map for the indoor positioning
system. The testing samples were measured at 30 distinct
locations in this test field. To evaluate the orientation effects,
users orientated in four directions, north, east, south, and west
and the corresponding RSS values were recorded. At each
reference location, 50 RSS samples (Q=50) were recorded for
each orientation. A Gaussian distribution with zero mean and
unity variance was used as the reference distribution. HEQ was
applied to each component of the temporal-spatial Wi-Fi radio
for both offline and online phases. To obtain the transformation
of each component, the cumulative histogram was estimated
by considering 100 uniform intervals betweenui±4σi, where
ui and σi are the mean and standard deviation of thei-th
component of the reshaped RSS vector, respectively.

B. Performance Evaluation

First, Fig. 3 shows the distribution of RSS measurements
from four orientations, at the same location, from the same
AP. The lines indicate that the average RSS values from north,
east, south, and west were -57.7, -56.6, -63.5, and -61.1 dBm,
respectively. This figure clearly reveals the changing RSS
patterns problem caused by the user orientation variation.It
indicates the difficulty of accurately determining the location
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Fig. 3. The RSS distributions from the same AP with differentorientations.
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Fig. 4. Box plot of positioning errors under orientation matched and
mismatched conditions.

based on RSSs without the assistance of orientation informa-
tion.

Fig. 4 shows a box plot of the statistical positioning errors
in orientation match and mismatch conditions in the finger-
printing system. Each boxs red line represents the median, the
blue boxes represent the 25-th and 75-th percentile values,and
the dashed lines represent the maximum and minimum value.
In this experiment, the term “match” means that both testing
and training data are measured in the same user orientation.
By contrast, “mismatch” means that the testing data are mea-
sured from orientations different from which the training data
were measured. For example, the first box for the mismatch
condition indicates that the training data are measured from
the north, and the testing data are measured from three orienta-
tions: east, south and west. Fig. 4 shows that a match between
the testing and training orientation is desirable for minimizing
the positioning error in a fingerprinting-based location system.
By contrast, the performance degrades when the orientation
differs between the testing phase and the training phase. Inthe
match condition, the median error was approximately2.1 to 3
m, whereas that of the mismatch condition increased to4 to 5.3
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Fig. 5. Cumulative positioning error distribution under the orientation
mismatched condition (the orientation of training data is west).

m. Numerical results showed that, in mismatched conditions,
the performance of the median positioning error degraded
43.91% on average. These results verify that the mismatch
orientation easily influences the positioning accuracy, because
the RSS patterns did not match in this scenario.

Fig. 5 displays the cumulative positioning error of the RSS
and the Gaussian equalized RSS (ERSS) in the condition of
orientation mismatch. In this experiment, the training data
were measured from the west whereas the testing data were
measured from four distinct directions, north, east, south,
and random. This figure shows that the proposed approach
outperformed the original method under various mismatch
conditions. In this mismatched orientation, the 67-th percentile
localization error of the proposed algorithm remained below
4.5 m, whereas that of the RSS increased to 7 m. The proposed
algorithm, based on the ERSS, improved the performance of
the raw RSS by approximately 28.84% in all cases. Fig. 6
shows the cumulative positioning error under an alternative
orientation mismatched condition, where the training datawere
measured from the north and the testing data was measured
from east, south, west, and random. According to Fig. 6, ERSS
evidently enhanced the robustness, and the accuracy within4
m is improved from 48.75% to 79.12%. The results generally
agree well with Fig. 5, indicating that the proposed algorithm
is capable of achieving robust location estimation, even when
orientation is mismatched, by equalizing the temporal-spatial
radio power.

Finally, the proposed algorithm is compared with four
traditional approaches for addressing the problem of orien-
tation variation: the compass-assisted method [50], [51],the
orientation classifier [56], the compressive sensing [53],[54]
and the radio map filtering methods [52]. The compass-assisted
approach involves the assumption that both the device and
radio map contain real-time orientation information and esti-
mating the testing measurement according to the orientation-
matched radio map only. Thus, this approach can be regarded
as a perfect match case. The orientation classifier estimates
the user’s orientation according to the moving trajectory and
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Fig. 6. Cumulative positioning error distribution under analternative
orientation mismatched condition (the orientation of training data is north).

varying RSSs based on the assumption that a user moves in a
constant direction at a constant speed. When implementing the
orientation classifier, this study assumed a 75% accuracy of
estimated direction. The compressive sensing approach com-
bines affinity propagation to improve the positioning accuracy,
where the real-time orientation information can be ignored. In
this method, we set the number of clusters to 5 and the reduced
dimension to 10. The radio map filtering approach removes
incompatible RSS samples during the offline and online phase
We have implemented these methods and compared the posi-
tioning accuracy in a mismatch scenario. Note that, although
compressive sensing and radio map filtering are robust to
orientation mismatch, they are still based on an extended
orientation-aware radio map (i.e., assume the availability of
digital compasses during the offline and online phase).

Fig. 7 shows a comparison of the positioning accuracy of
various algorithms in a mismatch scenario, where the errorsare
cumulated from all mismatch conditions and the orientation
information of radio map is not given. This figure indicates the
effectiveness of the orientation classifier approach. Compared
with the traditional RSS method, which is easily influenced
by the user orientation, the orientation classifier improved
the median error by 38.34%. The compass-assisted approach
achieved the most favorable performance, reducing the median
error by 51.43% compared with the RSS. This is because the
location is accurately estimated according to the orientation-
matched radio map. This figure shows that the radio map filter-
ing does not provide significant improvement, as compared to
RSS-based method. This is because probabilistic schemes are
based on the statistics of the samples, and sufficient numberof
samples are required to estimate the model parameters. This
result agrees well with that in [52]. Next, the result indicates
the effectiveness of the compressive sensing approach. This
may be that the clustering method reduces the large error, as
fewer reference locations are considered. More importantly,
Fig. 7 shows that the proposed algorithm provided better
performance compared with the orientation classifier, and even
comparable accuracy to the compass-assisted method. The
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Fig. 7. Performance comparison between different positioning algorithms.

result again verified that the ERSS is a robust positioning
characteristic. The advantage of the proposed algorithm isthat
no assumptions are made regarding the orientation process,
which is difficult to model because of the random user
behavior. Moreover, unlike traditional methods, which require
assistance from a digital compass, the proposed algorithm does
not require additional hardware and orientation information
from radio map .

C. Variation of Reference Distributions

In this section, we performed extra experiments to evaluate
the improvement of the proposed algorithm using different
reference distributions. We estimated the reference distribution
through the training temporal-spatial radio map instead ofus-
ing Gaussian to perform HEQ. Compared to Gaussianization,
the advantage of this approach is that only the testing RSSs
are required to be transformed. Tables I and II report five
error measures numerically including average, 50%, 67%, 90%
percentile errors, and STD (standard deviation) in two mis-
match conditions, where ref-G and ref-T indicate the reference
distribution is obtained, respectively, by Gaussianization and
training data. The experimental setup in Tables I and II is the
same as that in Fig. 5 and Fig. 6, respectively.

Both tables show that, no matter what reference distri-
butions the proposed algorithm uses, ERSS still maintained
robustness superior to that of RSS. This again demonstrates
the effectiveness of the proposed mechanism. Nevertheless,
we discover that the performance slightly differs in different
scenarios. For example, Tab. II shows that the selection of
training data as reference given better results than Gaussian
for localization. It seems intuitive because the distribution
is empirically calculated using additional information from
radio map. However, in Tab. I, Gaussianization outperforms
the training data reference when the testing orientations are
east and south. This is because the estimated probabilistic
distribution is susceptible to data variation. Changing the
orientation of training data may introduce bias or errors inthe
global statistic, making precise distribution estimationdifficult.
Another critical issue is the amount of training data from radio
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TABLE I
FIVE POSITIONING ERROR MEASURES(IN METERS) FOR DIFFERENT

ORIENTATION (TRAINING : WEST).

Testing: north

Methods\Performance Average 50th 67th 90th STD
RSS-based method 5.22 5.22 7.15 9.41 3.04

ERSS-based (Ref-G) 3.95 3.69 4.52 6.89 2.27
ERSS-based (Ref-T) 3.75 3.58 4.50 6.72 2.13

Testing: east

Methods\Performance Average 50th 67th 90th STD
RSS-based method 5.23 5.37 7.38 9.50 3.35

ERSS-based (Ref-G) 3.73 3.46 4.27 7.39 2.42
ERSS-based (Ref-T) 3.88 3.72 4.69 6.67 2.13

Testing: south

Methods\Performance Average 50th 67th 90th STD
RSS-based method 5.10 5.25 7.28 9.48 3.23

ERSS-based (Ref-G) 3.74 3.60 4.29 6.71 2.26
ERSS-based (Ref-T) 3.86 3.72 4.77 7.05 2.20

Testing: random

Methods\Performance Average 50th 67th 90th STD
RSS-based method 5.09 5.19 7.20 9.42 3.24

ERSS-based (Ref-G) 3.64 3.26 4.18 6.51 2.15
ERSS-based (Ref-T) 3.79 3.60 4.38 7.43 2.44

TABLE II
FIVE POSITIONING ERROR MEASURES(IN METERS) FOR DIFFERENT

ORIENTATION (TRAINING : NORTH).

Testing: east

Methods\Performance Average 50th 67th 90th STD
RSS-based method 3.83 4.03 5.00 6.15 1.90

ERSS-based (Ref-G) 2.93 2.59 3.23 5.99 1.96
ERSS-based (Ref-T) 2.59 2.31 3.23 6.27 2.27

Testing: south

Methods\Performance Average 50th 67th 90th STD
RSS-based method 3.90 4.10 5.04 6.39 2.02

ERSS-based (Ref-G) 3.53 3.17 4.11 6.99 2.24
ERSS-based (Ref-T) 2.49 2.37 3.12 5.82 2.34

Testing: west

Methods\Performance Average 50th 67th 90th STD
RSS-based method 4.04 4.12 5.09 6.67 2.02

ERSS-based (Ref-G) 3.37 2.95 4.00 6.67 2.24
ERSS-based (Ref-T) 2.41 2.23 3.00 6.09 2.41

Testing: random

Methods\Performance Average 50th 67th 90th STD
RSS-based method 4.18 4.03 5.20 8.03 2.72

ERSS-based (Ref-G) 3.34 3.00 4.21 6.59 2.28
ERSS-based (Ref-T) 2.42 2.24 3.05 6.14 2.37

map. When the target indoor environment is large, the amount
of estimation samples may be insufficient for a reliable his-
togram computation. As mentioned, the data-driven reference
distribution could enhance the robustness against orientation
mismatch. Nevertheless, we note that, Gaussianization is a
safer approach to accommodate as much data variation as
possible in the face of limited training data, unknown indoor
environments and training orientation.

D. Analysis of Results

To provide insight into the proposed algorithm, how the
ERSS compensates for the effect of orientation mismatch in
location estimation is analyzed in this section. Fig. 8 shows
the original Wi-Fi RSS probability distributions, which were
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Fig. 8. The impact of diverse orientations on the probability density of
temporal-spatial RSS samples at a fixed reference location.
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Fig. 9. The impact of diverse orientations on the absolute RSS values of the
reshaped temporal-spatial vector (Eq. 9) at a fixed reference location.

estimated according to the measurements from 1500 temporal-
spatial signals (50 temporal samples from 30 APs) at a
specific reference location. This figure shows that the diverse
orientations severely affect the probability distributions of the
Wi-Fi radio power. In the proposed algorithm, the effect of the
orientation is assumed to be a certain transformation of the
RSS representation space, incurring a considerable mismatch
problem when training and locating orientations differ. Fig. 8
verifies this assumption. This observation is generally consis-
tent for all reference locations. Fig. 9 shows the absolute RSS
values of the reshaped vector in Eq. 9. This figure shows how
the multidimensional RSSs from four orientations change over
time. Similarly, this figure shows that a substantial influence
resulted from the different orientations. This verifies theeffect
of orientation on measuring Wi-Fi radio, and the mismatch
causes determining the location based on training RSS patterns
to be difficult when using the fingerprinting-based system.

Fig. 10 shows an equalization case, where the testing
RSS measured from the E are transformed such that their
cumulative histogram matches that of the reference training
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Equalization

Fig. 10. An equalization case. The testing RSSs measured from the E are
transformed such that their cumulative histogram matches that of the reference
training data measured from the W.

data measured from the W. For example, the proposed algo-
rithm changes the RSS values -85 into -75 dBm in Fig. 10
because the same cumulative probability 50% is presented in
original and equalized domain, respectively. Note that in this
case, the positioning error using RSS is 6.84 m on average
under orientation mismatch conditions whereas it was reduced
to 2.84 m using the equalized RSS. That means that the
impact of orientation was significantly alleviated throughthe
equalization process. In other words, the proposed algorithm
compensates for variation in user orientations, which distorts
the RSS space. Similar plots can be observed for testing data
at different locations and orientations, and only a typicalcase
is shown in Fig. 10 because of space limitations.

Fig. 11 shows the transformations obtained in Gaussianiza-
tion case used to convert the original RSS histograms into the
reference histogram, by using the proposed algorithm. Thisfig-
ure shows that, in this case, the RSS values ranging from -50 to
-100 dBm were transformed into an equalized version ranging
from -4 to +4. When a Gaussian was used as the reference
distribution, the corresponding reference histogram was easily
obtained and is also depicted in Fig. 11. After the equalization,
the histograms of the transformed RSS representations are
shown in Fig. 12. This figure shows that the transformed
RSSs approximate the reference probability distribution and
indicates that the impact of orientation on the distribution was
considerably alleviated, as indicated in Figs. 8 and 9. When
an orientation mismatch occurs between training and locating
conditions, the proposed algorithm normalizes all momentsof
RSSs distribution to those of the reference distributions.Note
that although the absolute RSS vales were equalized, the rela-
tive information between the multi-dimensional RSSs was still
preserved for localization. Finally, Fig. 13 shows the temporal-
spatial trajectory of the ERSSs. Compared with Fig. 9, Fig.
13 shows that the orientation mismatch was substantially
reduced. The experiments and analysis reveal the effectiveness
of the proposed algorithm in providing robust indoor Wi-Fi
localization in the presence of orientation mismatch.
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Fig. 11. An example of the transformation function to equalize RSS and the
reference histogram function.
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Fig. 12. The impact of diverse orientations on the probability density of
equalized Gaussian RSSs at a fixed reference location.
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fixed reference location.
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IV. CONCLUSION

This study proposes a novel approach based on HEQ
to compensate for an orientation mismatch in robust Wi-Fi
localization. By transforming the temporal-spatial radiosignal
strength into a reference histogram, the proposed algorithm
effectively prevents the performance degradation under ori-
entation mismatch conditions. Specifically, HEQ is applied
to each component of temporal-spatial radio to improve the
robustness of indoor localization systems. The proposed ap-
proach is conceptually simple and easy to implement in practi-
cal applications. The advantages of the proposed algorithmare
that it does not involve assumptions regarding the random user
behavior, and does not require embedding a digital compass
in mobile devices. The experiments, conducted in an indoor
Wi-Fi environment, confirm the superiority of the proposed
algorithm in orientation mismatch compensation. Results show
that the proposed algorithm outperforms the orientation clas-
sifier method and provides a comparable positioning accuracy
to that of the compass-assisted approach.
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