

Speech Enhancement Based on Deep Denoising Autoencoder

X. Lu*, Y. Tsao, S. Matsuda, C. Hori xugang.lu@nict.go.jp

National Institute of Information and Communication Technology, Japan.

Interspeech 2013

What is the focus?

Estimating clean speech spectrum from noisy one

Problem description

Forward problem: $f(\cdot)$:

$$f(\cdot): (x) \to (y)$$

Clean speech Noisy speech

Inverse problem:

$$\varphi(\cdot)$$
:

$$\rightarrow (x)$$

Traditional ways

Linear or Gaussian assumption

The second order statistic structure

Short temporal signal structure

Frame by frame estimation (e.g. 20 ms)

Wiener filtering [P. P. Paliwal et al, 1987]; Signal subspace [P. C. Loizou, 2007]; Minimum mean square error based estimation [Y. Ephraim et al, 1990]

Inverse estimation

Inverse problem: $\phi(\cdot)$: $y \rightarrow x$

One to many (ill-posed inverse problem)

Our considerations

- One to many (ill-posed inverse problem)
 - Nonlinear high order statistical structure
 - Long temporal signal structure

Nonlinear mapping

- Neural network (NN)-Universal approximation
 - One of the most efficient ways for learning nonlinear mapping functions
- Deep neural network (DNN)
 - Better generalization with robust performance than traditional one-hidden-layer NN [Hinton et al, 2006]
 - Successfully used on automatic speech recognition (ASR) [Yu et al, 2009]
 - → Learning the inverse denoising function

Autoencoder vs. Denoising autoencoder

Learning speech basis functions for approximation (clean-clean speech pairs)

Problem formulation for denoising AE

Reconstruction error:
$$L(\Theta) = \sum_{i} \|\mathbf{x}_{i} - \hat{\mathbf{x}}_{i}\|_{2}^{2}$$

Objective function:
$$J(\Theta) = L(\Theta) + \alpha \|\mathbf{W}\|_{2}^{2} + \beta \rho (h(\mathbf{y}))$$

Autoencoder transform:
$$h(\mathbf{y}_i) = \sigma(\mathbf{W}_1\mathbf{y}_i + \mathbf{b})$$
$$\hat{\mathbf{x}}_i = \mathbf{W}_2h(\mathbf{y}_i) + \mathbf{c},$$

Regularization on weights:
$$\|\mathbf{W}\|_2^2 = \sum_{i,j} w_{ij}^2$$
.

Regularization on neural response: $\rho(h(\mathbf{y}))$

$$\Theta^{*} \stackrel{\Delta}{=} \arg \min_{\Theta} J\left(\Theta\right)$$

How to stack denoising AE to make deep?

Data set and noisy conditions

- Data:
 - Training: 350 clean utterances
 - Testing: 50 utterances
 - Input data: Spectral patches 11 frames (40 Mel bands, 16 ms window size, 8 ms shift)

- Noisy condition
 - Factory and car noise with SNR 0, 5, 10 dB

Evaluation criteria

- Evaluation criteria
 - Noise reduction

Reduct
$$\stackrel{\triangle}{=} \frac{1}{N * d} \sum_{i=1}^{N} |\hat{\mathbf{x}}_i - \mathbf{y}_i|$$

Speech distortion

$$Dist \stackrel{\Delta}{=} \frac{1}{N * d} \sum_{i=1}^{N} |\hat{\mathbf{x}}_i - \mathbf{x}_i|$$

Perceptual evaluation of speech quality (PESQ)(0.5-4.5)

Effect of training data set size

	\				
	500	Training set size	10 k	40 k	80 k
		Reduct (dB)	2.01	1.94	1.93
		Dist (dB)	0.62	0.47	0.43
-		PESQ	2.64	3.36	3.52
ΙΖέ		,			
er si		Training set size	10 k	40 k	80 k
laye		Reduct (dB)	2.01	1.94	1.93
len	300	Dist (dB)	0.61	0.47	0.44
Hidden layer size		PESQ	2.77	3.32	3.44
H			•		*************************************
		Training set size	10 k	40 k	80 k

100

→The much the better

Training set size	10 k	40 k	80 k
Reduct (dB)	1.99	1.94	1.93
Dist (dB)	0.60	0.48	0.47
PESQ	2.80	3.30	3.33

Training data set size

Effect of hidden layer size

80000 spectral patches for training

hidsize	100	300	500
Reduct (dB)	1.93	1.93	1.93
Dist (dB)	0.47	0.44	0.43
PESQ	3.33	3.44	3.52

→ The larger the better if the training data size is large enough

Effect of hidden depth

	N				
		hidsize*layer	500*1	500*2	500*3
	500	Reduct (dB)	1.93	1.91	1.92
		Dist (dB)	0.43	0.40	0.42
		PESQ	3.52	3.61	3.52
e					
siz	300	hidsize*layer	300*1	300*2	300*3
Hidden layer size		Reduct (dB)	1.93	1.92	1.92
		Dist (dB)	0.44	0.40	0.40
		PESQ	3.44	3.52	3.61
Hid					
I		hidsize*layer	100*1	100*2	100*3
		Reduct (dB)	1.93	1.93	1.93
	100	Dist (dB)	0.47	0.44	0.43
	100	PESQ	3.33	3.39	3.39
					-

Deep

→ The deep the better if the training data size is large enough

MMSE vs DAE

The second order statistic based methods try to keep large energy components.

Quantitative evaluations

Evaluations	Noise reduction			
SNR (dB)	Factory noise		Car noise	
	MMSE	DAE	MMSE	DAE
0	2.35	2.72	1.05	0.83
5	2.08	2.32	0.92	0.63
10	1.84	1.93	0.82	0.47

Evaluations	Speech distortion			
SNR (dB)	Factory noise		Car noise	
	MMSE	DAE	MMSE	DAE
0	1.56	0.59	0.63	0.27
5	1.28	0.47	0.59	0.24
10	1.05	0.43	0.57	0.21

Evaluations	PESQ		_	
SNR (dB)	Factory noise		Car noise	
	MMSE	DAE	MMSE	DAE
0	1.22	2.82	2.90	3.98
5	1.73	3.19	3.05	4.09
10	2.15	3.39	3.17	4.18

DAE outperforms MMSE in almost all conditions (exception For noise reduction in car noise Condition)

Summary and conclusion

- Learning the discriminative mapping function between noisy and clean speech (explores nonlinear high-order statistical structure)
- Long temporal structure is incorporated to implicitly regularize the ill-posed inverse problem
- Deep makes better performance than shallow, but enough training data is required
- →How to incorporate speech temporal hierarchical structure in the network
- → How to regularize the network, e.g., sparse constrain

Last slide

Thanks for your attention